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Abstract

The work of this thesis explores statistical and machine learning methods for anomaly
detection in a novel low-power microwave breast cancer screening system. Reported
dielectric contrast in the microwave frequency range between healthy and malign
breast tissue is the main motivator behind the effort to design a time-domain radar-
based prototype for safe breast screening. The microwave radar does not strive to
yield a three-dimensional image of the breast interior. Instead, its aimed use would
be for frequent monthly screenings which have the potential to detect a departure
from the normal, hence increasing the chance of early detection and, in turn, success-
ful treatment. The data used for the development of the algorithms was obtained
either in controlled laboratory experiments on tissue-mimicking phantoms or in a
clinical setting. Since the data is preliminary and scarce, the conclusions may be
limited, but in the process of the algorithmic development, this work strives to take
into account the nature of the signals and how they have been generated in this very
new application. The following methods were adapted and applied to the data sets:
simple statistical analysis to illustrate the differences in the data sets investigated
in this work; discrete Fourier transform, short-time Fourier transform, empirical
mode decomposition and ad hoc time domain analysis to derive effective feature
extraction strategies for the radio-frequency radar scans; high-dimensional statisti-
cal hypothesis tests to investigate the characteristics of time-frequency features ex-
tracted; random search, random walk, simulated annealing, genetic algorithm and
particle swarm derivative-free optimization algorithms to improve the computational
efficiency of an ensemble cost-sensitive support vector machine classifier based on
previous literature; and a forward step-wise ensemble selection algorithm to improve
the predictive performance of the classifier. For each of the methods, the results were

discussed in the light of the limitations of the collected data sets. Older data sets



were found to have high signal amplitudes on average. Statistically significant dif-
ferences between features extracted from scans with anomalies and scans without
anomalies were only observed for scans of subjects with higher average permittivity.
The time-frequency analysis features yielded superior predictive performance than
feature extraction using dimensionality reduction by principal component analysis.
The computational efficiency of the classifier was improved by a factor of at least
3.8 when optimization algorithms were used for hyperparameter selection, instead of
an exhasutive grid search. With the data available, the forward step-wise selection

algorithm did not improve the predictive performance as was anticipated.



Sommaire

Le travail de cette these explore des méthodes statistiques et d’apprentissage au-
tomatique pour la détection des anomalies dans un nouveau systeme de dépistage
du cancer du sein par micro-ondes a basse puissance. Le contraste diélectrique rap-
porté dans la plage de fréquence des micro-ondes entre un tissu mammaire sain et
malin est le principal facteur de motivation derriere I'effort de conception d’un pro-
totype basé sur un radar a domaine temporel pour un dépistage du cancer du sein
sans danger. Le radar a micro-ondes ne cherche pas a donner une image en trois
dimensions de l'intérieur du sein. Au lieu de cela, son utilisation serait destinée a
des dépistages mensuels fréquents susceptibles de détecter un écart par rapport a la
normale, ce qui augmenterait les chances de détection précoce et, par conséquent, de
traitement réussi. Les données utilisées pour le développement des algorithmes ont
été obtenues soit dans des expériences de laboratoire controlées sur des fantomes im-
itant les tissus, soit dans un cadre clinique. Comme les données sont préliminaires et
rares, les conclusions peuvent étre limitées, mais dans le processus de développement
algorithmique, ce travail s’efforce de prendre en compte la nature des signaux et la
facon dont ils ont été générés dans cette toute nouvelle application. Les méthodes
suivantes ont été adaptées et appliquées aux ensembles de données: analyse statis-
tique simple pour illustrer les différences entre les ensembles de données étudiés
dans le cadre de ce travail; transformée de Fourier discrete, transformée de Fourier
a court terme, décomposition de mode empirique et analyse ad hoc du domaine
temporel pour dériver des stratégies efficaces d’extraction de caractéristiques pour
les balayages radar a fréquence radio; tests d’hypotheses statistiques de grande di-
mension pour étudier les caractéristiques des caractéristiques temps-fréquence ex-
traites; recherche aléatoire, marche aléatoire, recuit simulé, algorithme génétique et

algorithmes d’optimisation sans dérivées de particules, afin d’améliorer 'efficacité



informatique d’un classifieur de machine a vecteurs de support sensible au cout basé
sur la littérature précédente; et un algorithme de sélection d’ensemble pas a pas
en avant pour améliorer les performances prédictives du classifieur. Pour chacune
des méthodes, les résultats ont été discutés a la lumiere des limites des ensembles
de données collectés. Il a été constaté que les ensembles de données plus anciens
avaient une amplitude de signal élevée en moyenne. Des différences statistiquement
significatives entre les caractéristiques extraites des balayages avec anomalies et des
balayages sans anomalies ont été observées uniquement pour les balayages des sujets
ayant une permittivité moyenne plus élevée. Les fonctionnalités d’analyse temps-
fréquence ont généré des performances prédictives supérieures a celles d’extraction
de caractéristiques utilisant la réduction de dimensionnalité par analyse en com-
posantes principales. L’efficacité informatique du classifieur a été améliorée d’un
facteur d’au moins 3,8 lorsque des algorithmes d’optimisation ont été utilisés pour
la sélection de 'hyperparametre, au lieu d’une recherche par grille exhasutive. Avec
les données disponibles, ’algorithme de sélection pas a pas en avant n’a pas amélioré

les performances prédictives comme prévu.
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Chapter 1

Introduction

1.1 Motivation

Breast cancer is one of the most common types of cancer in Canada. According
to the Canadian Cancer Society, with the exception of skin cancers, it is the most
common cancer among Canadian women and the second deadliest type of cancer
to that demographic [1]. Early diagnosis is essential for effective treatment of the
disease since the prognosis becomes less favorable the more the disease is allowed to
develop and spread throughout the body [2].

Conventional breast cancer screening modalities lack either convenience, comfort
or both for the patient being screened. The goal of the RF Breast Cancer Screening
group at McGill is to provide a more comfortable and convenient supplement for
these traditional methods. Specifically, the group hopes to develop a self-screening
system using a radio-frequency radar system in conjunction with machine learn-
ing and digital signal processing algorithms. Figure 1.1 shows what the finished
screening system might look like.

To this end, we want to gain a better understanding of the statistical properties
of the radar scan data collected using this type of system. This is essential for the
development of signal processing and machine learning detection algorithms for the
system, as well as for guiding future iterations of the system’s hardware if there is a
need to accommodate for particular subject characteristics. Furthermore, this work
investigates an efficient and robust detection algorithm, essential for a system such

as this one which is intended to be used by non-experts in a non-clinical setting.

14



Chapter 1 Collin A. Joseph

Figure 1.1: A concept illustration of what the final RF self-screening system
might look like. The antennas would be housed in a comfortable bra. Screening
would be performed with minimal discomfort to the patient. Image provided
by Clinton Ford Hlustrations.

1.2 Thesis Organization

This thesis is organized as follows:

o Chapter 2 - Background and Literature Review
This chapter provides background knowledge necessary for understanding the
work presented in later chapters as well as a review of recent literature in radio-
frequency breast cancer monitoring. Firstly, an overview of conventional breast
cancer screening modalities is presented. A review of recent work in radio-
frequency screening research is then presented. Next, background information
and literature related to the statistical hypothesis tests is given. Finally, the
chapter offers background information about, and a review of the relevant

machine learning and optimization methods used in the presented work.

o Chapter 3 - Methods
This chapter provides a description of various data sets and technical meth-

ods used to obtain the results described in this thesis. Firstly, a description

15



Chapter 1 Collin A. Joseph

of the data sets analyzed in this thesis is given. Secondly, a description of
the pre-processing methods used in this thesis is provided. This includes the
signal windowing and band-pass filtering methods used. Thirdly a description
of the various feature extraction methods used in this thesis is given. These
methods include feature extraction algorithms using the short-time Fourier
transform (STFT), discrete Fourier transform (DFT), empirical mode decom-
position (EMD) and directly extracted time-domain features (TDF). Fourthly,
a description of the high-dimensional statistical hypothesis tests used for data
analysis is given. These tests include tests for variations in high-dimensional
means and high-dimensional dispersions. Fifthly, a description of the machine
learning classification algorithms used to perform the experiments described in
this thesis are described. Sixthly, a description of various intelligent derivative-
free search algorithms that may be applied to hyperparameter selection for ma-
chine learning problems are described. Seventhly, multiple ensemble pruning
and selection algorithms for forming ensembles of machine learning models for
classification problems are described. Finally, a description of the full breast
cancer detection algorithms investigated in this thesis is given. This included
descriptions of a previously published ensemble classifier and an explanation
of various modifications made to the algorithm involving the aforementioned

search algorithms and ensemble pruning and selection algorithms.

e Chapter j - Results
This chapter presents the results of various experiments performed on radio-
frequency breast monitoring data. Firstly, a numerical analysis of the peak
absolute signal voltages of the data sets investigated in this thesis and a discus-
sion of the analysis and its implications, is presented. Secondly, the results of
statistical hypothesis tests performed on a recently collected clinical data set is
presented. A discussion of these results is also presented. Thirdly, the results
of classification experiments using new and old ensemble classifier algorithms

are presented. A discussion of these results is also presented.

e Chapter 5 - Conclusions and Future Work
This chapter presents the conclusions of the experiments conducted in this

thesis and suggests potential future avenues of investigation.
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1.3 Scope of Thesis and Contributions

This thesis presents the results of statistical hypothesis tests that investigate the
variation of features extracted from the radio frequency radar scan signals of a recent
clinical data set. Specifically, variations in the features of scans of subjects with
and without anomalous tissue present and scan subjects of varying tissue density
and combinations of these partitions are investigated to determine how easily these
features can be used to distinguish the groups from one another and to gain insight
into why or why not this is the case. The contributions of the author in this part of
the thesis is the application of statistical tests to features extracted from the recently
collected clinical data.

Additionally, the results of several machine learning experiments performed on
a recent clinical data set as well as an older volunteer data set with artificially in-
jected tumor responses. The first batch of experiments assess the benefit of using
several hyperparameter search algorithms to identify good candidates for cost sensi-
tive SVM ensemble selection, with regard to classification performance and classifier
runtime. The second batch of experiments asses the benefit of using more complex
ensemble selection strategies than simply selecting the best individuals, with regard
to classification performance and classifier runtime. The contributions of the author
in this section of the thesis is twofold. Firstly, proposing new ensemble classifica-
tion algorithms using: intelligent hyperparameter search algorithms and ensemble
pruning algorithms. Secondly, evaluating the performance of previously propose
classifiers and the newly proposed classifiers on new and old phantom and clinical

data sets.
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Chapter 2

Background and Literature

Review

2.1 Breast Anatomy and Tumors

Figure 2.1 from [3] shows a cross-section of a typical human female breast. The
breast consists mostly of fatty (or adipose) tissue with fibrous (the ducts) and glan-
dular tissue (the lobules) spread from the nipple throughout the breast.

Cancer is characterized by the uncontrolled growth and multiplication of abnor-
mal cells that can accumulate and form tissues called tumors that prevent structures
and organs within the body from functioning effectively. This behavior can be par-
ticularly catastrophic when it occurs in, or spreads to, vital organs because inhibition
of their functionality then threatens the life of the affected organism [4], [5]. The
majority of all breast cancers start in the ducts or the lobules of the breast [3]. It
is therefore, essential to detect and treat tumors at their early stage prior to their

spreading to other parts of the body.

2.2 Conventional Breast Cancer Screening

Several techniques for acquiring images of the tissue composition of breast are used
for screening and diagnosis of breast cancer. They are reviewed here briefly, in the

light of motivation for investigating additional diagnostic tools.
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Figure 2.1: An illustration of a typical human female breast cross-section.
The fibroglandular (the lobules and ducts) tissue, is typically spread through-
out the adipose (fatty) tissue of the breast from the nipple. This image is
modified from [3].

2.2.1 Mammography

Mammography is a common imaging technique for the screening and potential di-
agnosis of breast cancer [6]. It involves exposing a compressed breast to low-energy
x-rays (photon energy in the range 10-20 keV) and observing the strength of the
transmitted photons to construct an image of the breast tissues [7]. The x-ray pho-
tons are produced by an x-ray tube typically positioned above an image receptor,
upon which the breast is held by the compression apparatus. The image receptor
records the intensities of the photons transmitted through the breast tissue. The
attenuation of the photon energy in each tissue within the breast is different [7]. Con-
sequently, by measuring the spatial distribution of the attenuation of the photons,
an image of the tissues within the breast can be constructed. The breasts are com-

pressed to improve the quality of images acquired by the system. The compression
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reduces the transmission distance of the x-ray photons. This allows high resolution
images to be captured using low-energy photons, minimizing the harmful ionizing
radiation [7]. In addition, the compression of the breasts restricts movement, which
reduces the amount of motion blur in the acquired image [7].

This screening technique has some disadvantages related to the level of expertise
required to perform the screening and the health and comfort of the patient. Firstly,
a mammogram requires a trained radiology technologist to operate the equipment,
this increases the cost and reduces the accessibility of the procedure [6], [7]. Sec-
ondly, despite endeavors to reduce the photon energy as much as possible, repeated
exposure to x-rays increases the risk of cancer development [6]. The photons used
to generate the mammogram have the potential to damage DNA and cause car-
cinogenic mutations in otherwise healthy cells [8]. Thirdly, the breast compression

causes discomfort to the patient.

2.2.2 Ultrasound Imaging

Ultrasound imaging is often used as a follow-up screening modality to mammography
particularly if there is a need for additional screening or diagnosis of a specific area
of the breast. Ultrasound imaging uses high-frequency sound waves (usually in the
range 5-10 MHz) [9]. These are transmitted into the tissue under examination and
the reflected sound waves are recorded. The characteristics of the reflected sound
waves depend on the density of the tissue they were reflected by. This information
can be used to construct an image [9]. Ultrasound imaging is a more comfortable
experience for the patient since there is no need for pressure to be applied to the
breasts. There is also almost no preparation required and no health risk due to
radiation exposure [9]. However, this imaging technique also requires a real-time
interpretation by a radiologist and suffers from non-specificity. Ultrasound results

can be difficult to interpret for the purpose of routine screening [10].

2.2.3 Magnetic Resonance Imaging (MRI)

MRI is another imaging technique that may be used in the screening and diagnosis
of breast cancer. MRI images are generated by differentiating tissues with varying

concentrations of hydrogen atoms. When exposed to a high-level magnetic field, the
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hydrogen atoms are brought to a state where adequate radio-frequency exposure
causes them to oscillate and emit energy recorded by the system [11]. MRI scans
are very expensive procedures due to the cost of the equipment and also require
special expertise and patient preparation to be conducted [12]. As a consequence,

this imaging technique is less accessible than those previously discussed.

2.3 Low-Power Radio-Frequency and Microwave
Breast Cancer Detection

Experimental evidence indicates that there is a substantial difference between the
permittivities and conductivities of different types of breast tissue in the microwave
frequency range, particularly between tumorous tissue and glandular or adipose
tissue [13]-[16]. Microwave breast cancer detection and monitoring techniques take
advantage of this contrast to extract information about the tissue composition.
When electromagnetic radiation in the microwave frequency range is incident
on the boundary between two tissue types, the dielectric contrast causes a portion
of the electromagnetic wave to be reflected. The larger the contrast between the
two tissues that form the boundary, the larger the reflected portion of the incident
radiation will be. By analyzing these scattered signals we can attempt to generate
images of the breast tissue and determine whether there has been a change in the

tissue content from one measurement to another.

2.3.1 Imaging-Based Approaches

A popular approach to breast cancer screening using microwave technology is the
generation of images that are representative of the tissue profile of breasts to al-
low easy identification of suspicious tissue formations by human observers [17]-[19].
These images may also be analysed by software to further automate the screening
process.

This imaging-based approach is the focus of several research groups. One of the
most common approaches to imaging is known as confocal microwave imaging. This
involves illuminating the subject (human breast or tissue phantom) with pulses from

a radar antenna array, then synthetically focusing the recorded signals to estimate
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the amount of scattering that occurred at a finite grid of locations within the subject
and thus create an image that is representative of tissue boundaries within the
subject [17]. The University of Bristol group uses a multistatic radar system to
generate images; they have conducted trials on simulated breasts, synthetic breast
phantoms and human subjects [20]-[23]. The group at the University of Calgary
uses a single antenna system to acquire signals for image generation. Experiments on
synthetic phantoms and human subjects have been performed [24]-[28]. The group
at the National University of Ireland Galway uses a multistatic system and confocal
imaging techniques to generate images. Experiments on synthetic phantoms have
been conducted [29]. In [30] and [31], Conceigao et al. introduce a novel approach to
imaging using machine learning classification algorithms (specifically, support vector
machines) in conjunction with confocal microwave imaging techniques to generate
images that show regions of tumorous tissue and regions of non-tumorous tissue.
Another approach to image generation is known as microwave tomography. This
involves attempting to infer the dielectric profile of the subject from the scattering
of the microwave signals that is observed. These approaches are typically done
using frequency-domain systems. Researchers at Dartmouth College use microwave
tomography to generate images, and have conducted experiments on phantom and
clinical data sets [32], [33]. McMaster University’s microwave imaging group recently
has done work using microwave tomography to generate images of synthetic tissue
phantoms [34]-[36]. The University of Manitoba’s microwave imaging research team
has also taken a tomography approach to imaging [37], [38]. Experiments have been

conducted on synthetic breast phantoms.

2.3.2 Detection and Analysis using Machine Learning

An alternative approach is to focus exclusively on detection and analysis of anomalies
revealed by the microwave screening systems rather than attempting to generate
images [17].

Much resarch is focused on the differentiation between benign and malignant
tumors based on their response to microwave illumination. In [39] three feature ex-
traction methods are compared for the classification of tumors in simulated breast

tissue models, using their radar target signatures. Principle component analysis
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and discrete wavelet transform features were found to outperform independent com-
ponent analysis. In [40], a spiking neural network classifier is compared to linear
discriminant analysis and found to yield superior performance for classification in
dielectrically heterogeneous simulated breast models. Deep-learning techniques are
applied to simulated breast models in [41] and found to perform well compared to
other machine learning techniques. In [42], linear and quadratic discriminant anal-
yses are applied to radar target signatures of synthetic tumor phantoms. In [43],
Olivera et al. present a detailed investigation into several aspects of tumor clas-
sification using simulated breast models, including: antenna location, grouping of
antenna signals at the classifier level, signal pre-processing and feature extraction
strategies. In this work, random forest classifiers are used to perform the tumor
classification.

Alternative analysis and detection endeavours using machine learning include lo-
calization and detection of abnormalities in the breast tissue. Sekkal et al. recently
applied artificial neural network algorithms to tumor localization in simulated breast
models [44]. Song et al. present an investigation of time-frequency feature extrac-
tion methods for detection of anomalies in augmented human breast scans from a

multistatic radar system developed at McGill University in [45].

2.3.3 McGill University System

The McGill RF Breast Cancer Screening group uses a 16-element multistatic radar
system which takes advantage of the aforementioned dielectric contrast between the
tumorous and healthy breast tissues [46]. The system consists of an array of 16
antennas [47]-[49] arranged in a hemispherical frame as in [50] or in a prototype bra
as shown in Figure 2.2. This array of antennas is used to perform radar scans of
human breasts or synthetic breast phantoms. The radar scan is performed using a
short-duration, ultra-wideband (UWB) pulse in the frequency range 2-4 GHz [51].
Figure 2.3 shows a schematic of the group’s hardware system. The 16 antennas are
activated in individual transmit-receive pairs to capture the radar signals, in other
words, each antenna transmits a pulse while another antenna records the scattered
and transmitted signals. This produces a total of 240 signals per scan, one signal

for each uni-directional pair of antennas in the array.
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Figure 2.2: The McGill RF Breast Cancer Screening group’s prototype bra
using the ring antenna configuration. The flexible antennas are approximately
arranged in concentric circles radiating outwards from the center of the bra.
The 16 antennas in the radar array are labelled for detailed observation of the
240 signals resulting from all the transmitter-receiver combinations.

The McGill University research group is focused mainly on detection of depar-
tures from healthy baselines rather than the classification of the specific anomaly
[46], [52], [53]. The group does not strive to create images of the tissues within the
breast. Recent endeavours to detect such departures from healthy baselines using
ensembles of cost-sensitive support vector machines have been quite successful [46].
Extensive work has been done to re-create realistic synthetic breast phantoms and
use these phantoms to perform controlled experiments in a laboratory environment.
A significant amount of clinical volunteer experiments have also been conducted to

collect and analyse data from real human subjects [54].

24



Chapter 2 Collin A. Joseph

Pulse o Pulse
Generator Shaper
Clock in
o 15V -9dB
Lloc 0.87A
Clock |-> Splitter -
pfvfer — +35 dB
Trigger HL S ‘I:(
) x| Switchin
Computer 4—| Picoscope [@== | &
Circuit
16 SMA
Cables
16
Antennas

Figure 2.3: Block diagram of the McGill University time-domain radio-
frequency radar breast monitoring system. The ultra wide-band pulse used
in the radar system is generated by the pulse generator and pulse shaper,
then passed through an attenuator and amplifier (for amplitude adjustment)
to switching matrix that controls which pair of antennas in the 16 antenna
array are transmitting and receiving. The received signal is recorded by the
picoscope and stored on the computer.
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Methods

3.1 Data Sets

3.1.1 2014 Phantom Data Set

This data set [46] is a collection of scans of synthetic breast phantoms. These breast
phantoms are designed to mimic the electrical properties of real human breast tissue
[55]. There are 15 breast phantoms, 9 unique physical phantoms and 6 additional
configurations that are achieved by rotating the original phantoms. 14 of the 15
phantoms allow a plug containing tumor tissue mimicking material or a plug mim-
icking adipose or glandular tissue to be inserted. This allows both tumor-less and
tumor-bearing scans of these phantoms to be recorded. There are 292 scans in this
data set; 10 scans of each possible configuration (tumor-less and tumor-bearing for
each phantom) and two additional baseline (tumor-less) scans. In total, there are
140 tumor-bearing scans and 152 baseline scans. The scans were recorded at a

sampling frequency of 200 GHz.

3.1.2 2014 Clinical Data Set

This data set is a collection of scans of healthy human breasts; the scans have
selectively been injected with artificial tumor responses. The scans were originally
collected from 12 volunteers over the span of several weeks as described in [46].
The injection of the artificial tumor response is achieved using approximate model

of the microwave scattering in the breast tissue to create a signal response that
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represents the presence of a tumor in the breast tissue. The procedure is described
in detail in [46]. There are 96 scans in this data set. Some of the 12 volunteers were
able to participate in the study more frequently than others, consequently different
numbers of scans were collected from each volunteer. These scans were recorded at

a sampling frequency of 40 GHz.

3.1.3 2017 Clinical Data Set

This data set is a collection of scans of human breasts with and without anomalies
present in the breast tissue, These scans were collected between October 2017 and
April 2018 in a clinical setting at the Royal Victoria Hospital in Montreal, using the
system described in Section 2.3.3. The data set includes scans from 39 individual
volunteers for a total 71 scans. These scans were recorded at a sampling frequency
of 160 GHz. At the time of recording the switching circuit of the system (see Figure
2.3) was highly susceptible to cross-talk between the transmitting and receiving
lines and consequently produced a significant amount of noise before and during the
UWB pulse in the recorded signals.

In addition to the recorded microwave scans, other data was recorded about each
volunteer. The complete list is given in Appendix A. Additional notes related to the
scanning procedure and the medical findings from the volunteer’s consultation with a
medical doctor are included. The recorded data most relevant for the purpose of this
thesis were the volunteer’s breast density and whether there was some anomaly in
the volunteer’s breast tissue. The density of each breast was labeled using the Breast
Imaging Reporting and Data Systems (BI-RADS) mammographic density categories
[56]. These categories describe the approximate percentage of fibroglanular tissue

in the breast. The four categories are shown in Table 3.1.

Table 3.1: BI-RADS mammographic density categories. The numerical la-
bels used to describe each breast density category are given.

Group Label | Fibroglandular Tissue Percentage
1 less than 25%
2 25-50%
3 51-75%
4 more than 75%

Table 3.2 shows the distribution of volunteer scans over breast density levels and
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suspicion.

Table 3.2: Distribution of scans from clinical data set over breast density.
The number of healthy (anomaly-free) and suspicious scans within each cat-
egory is also shown. Due to ambiguous or insufficient labelling, 4 scans were
excluded from the tallies shown in this table.

Number of Scans
Breast Density | Healthy Suspicious Total

1 4 3 7
2 10 9 19
3 13 15 28
4 7 6 13

3.1.4 2017 Phantom Data Set

This data set is a collection of scans of synthetic phantoms constructed in 2017. The
data set was collected in February 2019 using the system described in Section 2.3.3.
The data set is made with 508 scans in total, 208 baseline (tumorless) scans and
300 tumor-bearing scans. This data set was collected using an improved switching
circuit that was not as susceptible to noise as the switching circuit used to collect
the data in Section 3.1.3. A total of 9 different breast phantoms were used in the
data set. For all scans, excluding 90 tumor bearing scans, phantoms were rotated 0,
45 and 90 degrees clockwise between successive scans to expand the measurement

variation of the data set in a realistic way.

3.2 Signal Pre-processing

3.2.1 Signal Windowing

Due to the differences in the hardware used to collect the 2014 data sets and the
more recent 2017 clinical data sets different windowing methods were necessary for

each data set.

2014 Phantom Data Set

The raw signals were 4096 samples in length, however, only 2048 of these samples
contained relevant signal information. Consequently, for these data sets, only the

last 2048 samples of each scan signal were retained.
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2014 Clinical Data Set

The scans in the version of this data set used in this thesis were already windowed
to 1024 when the artificial tumor injection was performed. No additional windowing

was used.

2017 Phantom Data Set

A fixed window was used for all signals. All scan signals started after 1500 samples
and a window length of 1500 was found to be sufficient to consistently capture the

entire recorded radar pulse.

2017 Clinical Data Set

Due to the noise introduced by the early switching circuit design, a more complex
windowing procedure was necessary for the 2017 clinical data. The cross-talk on
the switching circuit caused a large pulse to be recorded during signal transmission.
This pulse, shown between sample indices 500 and 1500 in Figure 3.1 could easily
be misinterpreted as the pulse that has been transmitted through the breast tissue
and received by the receiving antenna. However, analysis of the expected recording
system delay and hardware debugging indicated that this was not the case. A survey
of the scan signals in this data set was conducted to manually obtain approximate
windowing start samples that captured the appropriate portion of the signal. A
fixed window size of 1500 samples was used for all scan signals. This window length
value was empirically determined by a similar survey to sufficiently capture all the
signal information that is thought to be useful. Figure 3.1 shows an example of
this windowing method applied to a scan in this data set. The vertical dashed lines
shown in red indicate the segment of the signal that is retained in the windowing

procedure.
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Figure 3.1: Example of windowing for 2017 clinical data. All the signals from
a single scan are overlaid on a single axis. The first large pulse caused by the
early switching circuit should not be included so the sample window should
begin after it. Each scan was manually assigned an appropriate windowing
start sample that was recorded and used for pre-processing.

3.2.2 Band-pass Filtering

In order to remove undesirable low and high frequency noise from the recorded
signals a band-pass filter is applied to the 2017 clinical data. The 2014 data sets that
were available for analysis were found to be usable without requiring any additional
filtering. The scan signals are expected to carry most of their signal energy in the 2
to 4 GHz range since this is the frequency range of the UWB pulse used in the radar
system. In practice it was found that a significant portion of the signal energy in
the scans of the 2017 clinical data set was between 1.5 and 4 GHz. The exact reason
for this spreading of the bandwidth is to be investigated in work outside of this
thesis. Consequently a filtering pass-band of 1.5 to 4 GHz was selected to minimize
the loss of useful information. Figure 3.2 shows the average magnitude spectrum
of a scan from the 2017 clinical data set (after windowing as described in Section
3.2.1 has been performed). The vertical dashed lines shown in red mark the cut-off
frequencies of the band-pass filter (1.5 GHz and 4 GHz). Most of the signal energy is
within this frequency range. Figure 3.2 is cropped to show only frequencies upto 10

GHz for clarity. The filtering is done using a 6th-order Butterworth filter generated
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using the scipy.signal library [57].
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Figure 3.2: Average magnitude spectrum of a scan from the 2017 clinical
data set. This was generated by computing the average magnitude spectrum
over 240 signals comprising the scan. The vertical lines in red show the cut-oft
frequencies of the band-pass filter (1.5 GHz and 4 GHz). The low-frequency
spike is due to noise and is not directly related to the electromagnetic wave
transmission and scattering.

3.3 Feature Extraction

3.3.1 Principal Component Analysis

Principal component analysis (PCA) [58] is a dimensionality reduction method
which works by identifying linear combinations of the original features that encap-
sulate as much information about the data set as possible. These liner combinations
are referred to as the principal components of the data set. These components are
identified by analysing the covariance of the original data set features. More specif-
ically, these components are determined by solving a an eigenvector problem for the
covariance matrix. The components are the eigenvectors of the covariance matrix
and the eigen values are an indicator of how much information is encapsulated in
each component. Only a subset of these components containing the majority of the
data set information are retained. To generate features, data samples are projected

onto the principal components to yield a “score”. In the context of this thesis, the
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covariance of the time domain signal samples is what is analyzed to yield principal
components. For each signal, the 30 most significant principal component scores are

retained.

3.3.2 Short-time Fourier Transform

The short-time Fourier transform (STFT) allows signals to be decomposed simul-
taneously in time and frequency and is useful for capturing variations in frequency
over time. Time-frequency decomposition approaches to feature extraction for breast
cancer detection have been attempted in [45] with limited success. Statistical fea-
tures of the the short-time Fourier transform magnitude spectra of the scans were
extracted and used for analysis. The STF'T of each signal was computed using a
Hanning window of length 256 samples with 32 samples of overlap between windows.
The STEFT was computed using the scipy.signal library [57]. Under this STFT
configuration, the number of magnitude spectra produced for each signal (ng) is
represented by the following equation:

Ny

256 — 321 (3:1)

ns = |

where V; is the length of the time domain signal in samples. Consquently, there
were ng = 10 spectra for the 2014 phantom data set, n, = 5 spectra for the 2014
clinical data set and ng = 7 spectra for the 2017 clinical data set.

The statistical values computed for each STFT magnitude spectrum are de-
scribed in Table 3.3. In the case of the STFT magnitude spectra, x represents the
magnitude spectrum from which features are being extracted and N is the length
of the spectrum. The statistics in Table 3.3 were computed using scipy.stats and
numpy [57]. For the STFT features, there were 30 features per signal for the 2014
phantom data set which implies 30 x 240 = 7200 features per scan. There were
15 features per signal for the 2014 clinical data set resulting in 15 x 240 = 3600
features per scan. For the 2017 clinical data set, there were 21 features per signal

which implies to 21 x 240 = 5040.
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Table 3.3: Statistical features extracted from the time-frequency decomposi-
tions of the scan signals. The data sequence the statistics are extracted from
is denoted x and its length is denoted NV in the equations in this table.

Statistic Equation

Mean Absolute Value | pigps = #

Standard Deviation o= Zi%\lfl_xli—ﬂ’ 7= i@
Kurtosis K = w

Since the statistics described in Table 3.3 are all different in nature it is unrea-
sonable to expect that they would all be of comparable magnitude. Consequently, to
avoid artificial skewing of feature importance because of relative magnitude, these
features are scaled to a distribution with zero mean and unit variance by subtracting
the mean (taken over all samples) and dividing by the standard deviation (taken

over all samples).

3.3.3 Discrete Fourier Transform

Firstly, the discrete Fourier transform (DFT) of each signal was computed using
a fast Fourier transform algorithm. This yields a frequency spectrum of length
N; = 1024, N; = 2048 or N; = 1500 samples, respectively. The variation in the
number of samples was because of the different window lengths used for each data
set. Since the time domain signal is real valued, only the first % + 1 samples are
needed.

Secondly, the magnitude samples of the transformed signal in the frequency range
2-4 GHz are copied to a separate array. This is the frequency range of the trans-
mitted microwave pulse and is consequently expected to contain useful information.
The sample index range, [istart, tena), Of the selected samples was computed using

the following equations:

4GHz x 2 x (& +1)

lend = [ fs —| (3.2)
boparg — |22 X QfX G+, (3:3)
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ny = iend - Z.staxr‘t (34)

where f, is the data set’s sampling frequency. These magnitude spectrum samples
were used as features to represent the signals from each scan. In this thesis, the
phase information of the signals are ignored for simplicity. This method produces a
different number of features per signal depending on the sampling frequency. For the
2014 phantom data n, = 22 and consequently there were n, x 240 = 5280 features
per scan. For the 2014 clinical data n,, = 51 and, with n, x 240 = 12480 features per
scan. Finally, for the 2017 clinical data n, = 21 resulting in n,. x 240 = 4800 features
per scan. Since all of these values (within each data set) were of the same nature,
no scaling was necessary. The discrete Fourier transform was computed using the

numpy . £t library [57].

3.3.4 Empirical Mode Decomposition

Empirical mode decomposition (EMD) is an adaptive time-frequency decomposi-
tion algorithm that decomposes signals into band-limited waveforms called intrinsic
mode functions [59]. These features were extracted from each scan signal in a similar
fashion to the STFT features in Section 3.3.2. Firstly, 4 levels of EMD were per-
formed on each of the scan signals. This produced 4 IMFs. Secondly, the statistics
described in Table 3.3 were extracted from each IMF. The features were also scaled
to a distribution with zero mean and unit variance, as described in Section 3.3.2.
This produced a total of 12 features per signal and 12 x 240 = 2880 features per
scan. The EMD IMFs were computed using the PyEMD library [60].

3.3.5 Time-Domain Features

These features are statistical and numerical values extracted directly from the time-
domain signals. A total of 4 features are extracted from each signal. The first two
features are the mean absolute value and the standard deviation of the signal. These
are described in Table 3.3. The third feature is the waveform length; this feature
is taken from work by Hudgins et al. [61] in the area of myoelectric control and

has been successfully used in electromyography pattern recognition tasks [62]. The
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waveform length (I,,) is defined by the following equation:

=

-1
ly = | Az (3.5)

1

(2

where, x is the time-domain signal, N is the signal length and Ax; = x4 — z;.
This feature is the sum of successive absolute sample differences and is essentially
the cumulative waveform length. It encapsulates information about the waveform
amplitude and frequency. The fourth feature is the number of extrema in the time-
domain signal (denoted n.,). This feature is computed using the algorithm in Al-
gorithm 1. An extremum is identified as a point in the signal where the gradient
changes direction. These last two features were chosen because the presence of
a tumor in the breast tissue is expected to cause additional perturbation in the
recorded signal compared to signals recorded in the absence of a tumor. There-
fore, attempting to measure changes in the signal oscillation and complexity may
be useful for detection. Since these features were expected to have significantly
different value ranges, they were scaled to a distribution with zero mean and unit
variance after they were computed, as in Section 3.3.2. This feature extraction

method produced 4 features per signal which was equivalent to 960 features per scan.

Algorithm 1: Algorithm for computing the number of extrema (n.,) of a
time-domain signal. An extremum is identified as a point in the signal where

the gradient changes direction.
Input: time domain signal x, signal length N

Output: number of extrema n,,
Set ne, =0
Set Aprey = x[1] — z[0]

fori=11t0 (N—-1)do
Apew = i + 1] — x[i]

if sign(Dprev) # sign(Apew) then

‘ Neg = Nex + 1
end if
Aprev = Anew

end for

return n.,
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3.4 Statistical Analysis Techniques

Comparing the statistical properties of features extracted from scans of subjects
with different characteristics can aid in the development of detection algorithms and
hardware by providing insight into how variations in subject characteristics affect
the extracted features. The features extracted from the radio-frequency radar scans
form multidimensional feature vectors. These feature vectors could be examined
using tests for univariate data such as the T-test [63] or ANOVA [64] to analyze the
features individually, but this would produce a large number of very specific results
and would consequently be difficult to interpret since the hypothesis test results of
individual features mean very little on their own. Instead, comparing the feature

vectors in a more direct manner to obtain more concise results is more informative.

3.4.1 Hypothesis Tests for High-Dimensional Means

Statistical hypothesis tests such as the T-test or ANOVA work by comparing test
statistics derived from the two populations to the probability distribution of the
statistic when the null hypothesis is assumed to be true. We can determine the
probability (the p-value) that the statistic we computed was drawn from the null
distribution and thus determine the probability that the null hypothesis is true.
The T?-test described by Harold Hotelling [65] is a generalization of the widely
known T-test that is designed to compare multivariate data directly. However,
this test is not very effective when the dimensionality of the individuals in each
population (say, p) is much larger than the number of individuals in each population,

(say, n) as is the case with our data. The T? test statistic is computed as follows:
TH - (Xl - XQ)TSA(X} - XQ) (36)

where, X; is the mean vector of population i € {1,2} and S is the pooled sample
covariance matrix of the 2 populations. Because p > n, S is singular (non-invertible),
therefore Ty cannot be computed. Proposed alternatives to the T? test involved
using some alternative to Ty involving the sum of squared mean differences with
additional scaling or biases such as those in [66], [67] and [68] to compensate for

the relatively small population sizes. These sum-of-squares-based methods work
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best with data where the relatively large differences between the population means
are present in a large number of the components of the mean vector (i.e., if the
true mean difference vector comprises mostly non-zero values). In cases where the
differences are present in only a few components of the mean vectors, a supremum
test is more appropriate. A supremum tests considers only the largest component-
wise difference between the population means when computing the test statistic.
Such a test is described in [69].

Since we do not know what kind of differences to expect between the populations
we are comparing, a more general approach is desirable. The adaptive sum of powers
(aSPU) test described in [70] uses various sum of powers test statistics to evaluate
the populations being compared. The general formulae for these statistics are shown

in Equations 3.7 and 3.8.

P

L) =Y (X1 = X, for A ez (3.7)
=1
L()\) = ma.flgigp(Xl(i) — Xéz))2/0_”7 for A = 0 (38)

where, X 1(i) is the ith element of the mean vector of the first population and X'éi) is
the 7th element of the mean vector of the other population and o;; is an estimate
of the pooled variance of the ¢th element. Equation 3.7 is similar to the statistic
described in [66], but generalized for any value of A\. Equation 3.8 is based on the
statistic described in [69]. For each value of A the asymptotic distributions described
in [70] are used to compute p-values for each statistic. The most powerful result
(the smallest p-value) of all the tests executed is then selected to generate a final
p-value for the adaptive test. The ordering of the test powers is inferred from the
size of the p-value produced by each test. This adaptive test is implemented in the
highmean R package and uses A ={1, 2, 3, 4, 5, 6, oo} [70].

In the context of this thesis, each sample in the populations compared in this
test was a concatenated vector of features from a subset of signals from a particular
scan. The populations themselves were selected according to subject characteris-
tics that were expected to affect the distribution of the extracted features (such as

breast density and anomaly presence). The number of features and samples varied

according to the experiment being performed. The null hypothesis of the test was

37



Chapter 3 Collin A. Joseph

that the means of both populations were the same.

3.4.2 Hypothesis Tests for High-Dimensional Dispersion

It can be advantageous to determine whether there is a statistically significant dif-
ference in the population dispersion (variance) of two mutually exclusive groups of
data.

A method for comparing multivariate distributions is described by Marti An-
derson in [71]. This method compares the average distance of the members of each
group to their respective group centroids (means). Multiple distance metrics were
proposed in [71] for the analysis of ecological data. Euclidian distance is used in the
experiments described in this document for simplicity. The other distance metrics
described in [71] were developed for specific biology applications and are unlikely to
be advantageous in the context of this thesis. ANOVA is performed on the computed
average distances to determine whether there is a statistically significant difference
between how the two populations are spread around their means (their dispersion).
The p-value of the generated tests statistics can be computed using a theoretical
distribution, or by permuting the quantities that the test statistics are derived from
a large number of times to generate a “permuted” null distribution. This test is
implemented in Python as the permdisp test from the QIIME (quantitative insights
into microbial ecology) software library. In each experiment, 999 permutations are
used to generate a p-value from the permuted null distribution (the “permuted p-
value”) which is produced in addition to the theoretically determined p-value (the
“observed p-value”). The populations compared using this test and the hypotheses

are the same as described in Section 3.4.1.

3.5 Machine Learning Algorithms

3.5.1 Detection Algorithms
Support Vector Machines

Support vector machines (SVMs) [72] perform classification tasks by computing a

hyperplane of maximal separation between classes. The hyperplane, of the form:
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f (r) = 2T B+ By, is computed by solving an optimization problem which maximizes
the margin between the hyperplane and each class. This may be formulated as a

minimization problem of the form:

min — +C Y ¢
8.0 HﬂH ;

subject to & > 0,y;(z] B+ Bo) > 1 — &,V

(3.9)

where, x; represents the training data samples, y; represents the corresponding bi-
nary labels & represents how far each data sample is on the incorrect side of the
margin, (as illustrated in Figure 12.1 of [72]), and C is a tuneable penalization
parameter. Once the hyperplane of the form is computed new data samples are
projected onto the plane and classified according to the sign of the projection (since
this indicates which side of the hyperplane the sample is on). For problems where
the classes are not linearly separable an additional function, called a kernel, may
be applied to the data to project the data points to higher dimensions where linear
separation may be easier, and a separating hyperplane may be generated more ef-
fectively. In this thesis we use a radial basis function kernel, which is parameterized

by a variable v as described in Section 12.3 of [72].

Cost-Sensitive Support Vector Machines

Control over how the SVM algorithm treats specific error types can be achieved by
modifying the minimization problem described in Equation 3.9 to allow different
penalty weightings for errors in each class, such as in [73]. The cost-sensitivity is

achieved in this thesis by modifying Equation 3.9 as follows:

min —— + w;C & 3.10
i 2 (810

where, the value of w; is dependent on the true label of the ith data sample. Specif-
ically, in this thesis, the positive class weight is fixed to w, = 1 while the negative
class weight w_ is treated as a single tunable parameter. The implementation in

the scikit-learn SVC Python class [74] is used in this thesis.
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Ensemble Learning

It has been found that groups of models often exhibit better predictive performance
than individuals [75], this ensemble approach has proven to be useful for RF breast
cancer detection [45], [46], [52], [53]. The ensemble classification methods used in

this thesis are described in more detail in Section 3.5.3 and Section 3.5.4.

3.5.2 Methods for Hyperparameter Selection

In [46], a grid search over more than 3000 hyperparameter configurations and up to
240 antenna pairs (3000 x 240 = 720,000) is used to select the best cost-sensitive
SVM models to be included in the final ensemble. While a grid search is the most
thorough approach and is guaranteed to find the best models (global optima) for
any criterion, it also requires massive computation.

Derivative-free optimization algorithms [76], [77] are useful for hyperparameter
selection problems. They allow optimal or near-optimal solutions to be found with-
out needing derivative information about the objective function that defines the
optimization problem. This is ideal since the objective functions that guide hyper-
parameter optimization in machine learning problems are typically complicated and
non-differentiable. In this thesis, the objective function used is an error metric, con-
sequently, smaller values are better and the goal is minimization. The error metric
used is described in more detail in Section 3.5.4. Unless stated otherwise, these

algorithms operate on a discrete hyperparameter grid defined in Table 3.4.

Random Search (RS)

This method randomly selects a limited number of samples from the hyperparameter
space and chooses the best of these. This allows superior runtime performance at
the risk of not finding an optimum. This search method has been shown to be
comparable and sometimes better than to more sophisticated search strategies [78].
In each iteration, a random hyperparameter configuration is generated by selecting
values for each hyperparameter from a uniform distribution of values within the
pre-determined range of each hyperparameter. The random configuration is then
evaluated and then stored if the objective function score is sufficient for inclusion in

the model library.
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Random Walk (RW)

This method starts at a random point in the search space then chooses a neighbor
to move to with a probability related to the fitness of the neighbors. The random
walk implementation used in this thesis is based on the implementation described
in [77]. The m neighbors are first sorted by objective scores in ascending order (the
best neighbors first). The fitness of each point is related to its objective function

score. The fitness f; of the ¢th neighbor, given an objective score H;; is defined as:

fi= - (3.11)

these fitness values are used to perform a roulette wheel selection. Specifically, a

cumulative probability g; is assigned to each neighbor using the following equations:

g = Z P (3.12)
j=1

b= fi
’ ZZL:1 fk

a random number, r, is then drawn uniformly from the range [0,1]. If ¢;_1 > r > ¢;

(3.13)

then neighbor 7 is selected as the next step in the random walk. The probability
that a neighbor will be selected is therefore proportional to its fitness relative to the
other neighbors. The algorithm terminates when the maximum number of objective

function evaluations is exceeded.

Simulated Annealing (SA)

This method was originally proposed by Kirkpatrick in [79] and is still frequently
used to solve NP-hard problems with non-differentiable objectives [80], [81]. The
method combines a simple greedy algorithm with an exponentially decaying random
exploration component. Starting at a random point in the search space (in this case
the hyperparameter space), the algorithm attempts to move randomly through the
space. Each randomly generated move is accepted with probability 1 if it leads to a
better objective function score, or if the objective score is not better, with a non-zero

probability determined by the current “temperature.” The probability of moving to
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a point with an inferior objective function score in the search space at step k of the

search is defined as follows:
_Aobj
ty

pr = exp( ) (3.14)

where ¢, is the current temperature and A is the difference in objective function
scores between the current point and its neighbor. The neighbor is accepted if a
random number, r, drawn uniformly from the interval [0,1] satisfies < pg. The
temperature parameter is intended to control the frequency of random exploration
as the algorithm traverses the search space. A relatively large initial temperature
is chosen to encourage random exploration at the beginning of the search. The
temperature decays at each step of the algorithm according to some predefined
function or “cooling schedule” to encourage local exploitation in later stages of the
search. In this thesis, a geometric decay function defined by the following equation

for a predetermined decay parameter o € (0,1):

tk+1 = tka (315)

the algorithm terminates when the maximum number of objective function evalua-

tions is exceeded.

Genetic Algorithms (GA)

This method uses procedures inspired by evolution in nature to find optima in
search spaces [82], [83]. Genetic algorithms are frequently used to solve optimiza-
tion problems with non-differentiable objectives that cannot be solved exactly with
polynomial time algorithms [84], [85]. The algorithm used in this thesis maintains a
population of “chromosomes” representing potential solutions. In many implemen-
tations the chromosomes are binary representations of the problem solutions. In the
implementation used in this thesis the chromosomes are simply arrays containing
the hyperparameter configurations. Floating point chromosomes have been shown
to work as well as or better than binary encoded chromosomes [86], [87]. In each
iteration, a pair of chromosomes are selected with probability proportional to their
relative fitness. This selection is performed using the roulette selection process de-

scribed in the random walk description in this section. The selected “parents” are
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combined to produce offspring using the averaging method described in Chapter 6
of [86]. The parent chromosomes Cp; and Cpy form the offspring chromosomes Cyy

and C,y according to the following equations:
001 = Ochl + (1 — OZ)CPQ (316)

002 = OzCPQ + (1 — Oz)Cpl (317)

where « is a pre-determined mixing parameter. These “alleles” or components of
each offspring are then mutated with a fixed probability and a dynamic parameter
range determined by the number of iterations that have been performed. This
approach is described in Chapter 5 of [86]. If an element v is selected for mutation,

the mutation is performed according to the following equations:

v—A(t,v—LB) ifr,=0
Vpew = (3.18)

v+ A, UB—v) ifr,=1

Alt,y) =y — ") (3.19)
where t is the current iteration count; UB and LB are the upper and lower bounds
for the parameter, respectively; r, is a randomly selected binary digit (which takes
values 0 and 1 with probability 0.5); r, is a randomly selected real number in the
range [0,1]; b is a parameter to control the influence of the iteration count. These
newly generated offspring are then compared to the existing population. If an off-
spring is better than the worst member of the population then the offspring is added
to the population and the worst member is removed. The algorithm manipulates
solutions using floating point operations, but at the end of each iteration the solu-
tions are rounded to the nearest integer grid values. The search region is bounded

by the upper and lower parameter limits of the discreet grid described in Table 3.4.

Particle Swarm Optimization (PS)

This method was originally proposed by Eberhart in [88]. It is inspired by the forag-

ing behavior of birds, fish and other swarming species in nature. This optimization

43



Chapter 3 Collin A. Joseph

method is also frequently used to solve NP-hard problems with non-differentiable
objectives [89], [90]. The algorithm tracks a population of “particles”, each with
its own position and velocity. Each particle also keeps track of the best solution it
has found and the best solution that has been found by the entire population. At
iteration, ¢, the location of the kth particle, X}, is updated according to its current
velocity, V}!. The objective function is then evaluated at the particle’s new location
and the individual and global best are updated if necessary. The particle’s velocity
is then updated according to the particle’s current velocity, the particle’s individ-
ual best solution (Py) and the global best solution (Gp). The velocity is updated

according to the following equation:
‘/Z—H = kat + Clrl(Pbk: — X};) + CQ’/’Q(Gb — X,i) (320)

where, t is the current iteration of the algorithm; ¢; and ¢y are parameters that
control the individual and social influence on the particle’s velocity; r; and ry are
randomly generated real numbers in the range [0,1]; w is the particle’s inertia. The
algorithm manipulates solutions using floating point operations, but at the end of
each iteration the solutions are rounded to the nearest integer grid values. The
search region is bounded by the upper and lower parameter limits of the discreet

grid described in Table 3.4.

3.5.3 Methods for Ensemble Selection

Ensembles of models often have more predictive power than individual models [75].
Ensembles of cost sensitive SVMs have been applied to radio frequency breast cancer

detection with some success [46], [52], [53].

Forward Stepwise Selection

In [91], [92] Caruana et al. propose a forward stepwise selection (FSS) method
for constructing predictive model ensembles. The ensembles are constructed by
successively adding classifiers from a library of models that maximize the ensemble’s
performance on a validation or “hill-climbing” data set. They also propose several

additional strategies to improve the performance of the algorithm.
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Once a library of base models has been generated, the ensemble is constructed
iteratively. First, it is initialized by selecting the best base model in the library,
then on each successive step, each other model is added to the ensemble, evaluated
on the validation set and then removed again. The ensemble that yields the largest
improvement in the evaluation metric being used to guide the ensemble selection is
then included in the ensemble permanently.

In addition to this basic procedure, Caruana et al. propose additional methods
to improve performance [91]. The following additional strategies will be investi-
gated in this thesis. Firstly, selection of base models with replacement is proposed.
For an ensemble of fixed size this reduces the chance of base models reducing the
performance of the ensemble. If replacement is not allowed, once the models that
improve the ensemble’s performance have been selected, there will only be models
that degrade its performance available in future iterations. By using selection with
replacement, the algorithm is able to avoid degrading the performance unnecessarily
if there only a small number of useful models. Performing selection with replacement
mitigates this situation since repeating good predictors is less likely to degrade the
overall ensemble performance. Secondly, several of the best models in the library are
used to initialize the ensemble instead of the single best model to reduce the chances
of overfitting to the first model’s prediction errors in the early stages of ensemble

construction.

3.5.4 Cost-Sensitive Ensemble SVM

Original Ensemble Classifier

The original classification algorithm can be described as follows. Firstly, a subset
of antenna pairs are selected based on their median peak amplitude over all scans
in the data set. If median peak amplitude is below a predetermined threshold the
antenna pair is not used for classification.

Secondly, the training data is separated into multiple train/validation folds. This
separation is performed according to the subjects of the radar scans. Specifically,
each validation set consists of scans from a single subject (i.e. a single human
volunteer or a single synthetic phantom).

Thirdly, for each of the selected antenna pairs, a grid search of cost-sensitive
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SVM hyperparameter values is then conducted using the average performance over
the train/validation folds to evaluate each hyperparameter configuration. The hy-
perparameter configurations are evaluated using the Neyman-Pearson score metric

[93]. This computed according to the following equation:
. 1
ENp = —HlaX(O, Pf - Oé) -+ Pm (321)
o

where, a is the false-positive target rate, Py is the false-positive rate and P, is the
false negative rate. The final evaluation score for each configuration is the average
Neyman-Pearson score over all train/validation folds.

Once this is done for all selected antenna pairs, an ensemble of classifiers is se-
lected from this library of cost-sensitive SVM models. The best 100 models over all
antenna pairs and hyperparameter configurations are chosen (this selection proce-
dure will hereafter be referred to as "best individuals selection” or BIS).

Three hyperparameters are tuned for each individual model, the general error
penalty (C), the kernel parameter () and the negative class penalty weight (w_).
A total of 4620 hyperparameter configurations are considered. The range of values
considered for each hyperparameter is shown in Table 3.4.

Table 3.4: Hyperparameter values considered when building the library of

cost-sensitive SVM models for ensemble selection. There are 4620 possible
hyperparameter combinations.

Hyperparameter Value Range
C {275, 274 . 215}
v {2715 2713 25}
w_ {1, 2 ... 20}

For prediction, an ensemble of “sibling” ensemble models is created by training an
ensemble with identical hyperparameters for each train/validation split and training
the models in the ensemble on the training samples of that split. The prediction of
each ensemble is a majority vote over all the individual models in the ensemble and
the final prediction of the classifier is a majority vote over all the ensemble models.

For evaluation of this classification algorithm and it’s proposed variations, the
training data is divided into several train/test splits before hand and the predictive

performance of the final classifier is evaluated using the these test sets. Additionally,
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by varying the false-positive target rate « a variety of false-positive and true-positive
rates are observed for each classification algorithm. Using these values a receiver

operating characteristic (ROC) curve can be generated for each algorithm.

Proposed Feature Extraction

While PCA [58] is the feature extraction method of choice in [46], a variety of other
feature extraction methods will be used in this thesis. PCA and these proposed

feature extraction methods are described in Section 3.3.

Proposed Hyperparameter Search

Instead of performing a grid search over all hyperparamerer configurations to build
the model library from which the final ensemble parameters are selected, various
hyperparameter searches are used to find a selection of relatively strong classifiers
without having to exhaustively evaluate all possible hyperparameter configurations.
The hyperparameter search methods are described in Section 3.5.2. In each hyper-
parameter search, the best configurations encountered are recorded and used to form
the model library that the final ensemble is built from. The objective function used
to guide the hyperparamter search is the average Neyman-Pearson score over all
inner train/test folds as in the original classifier design. However, since each false-
positive target requires its own search, the number of false-positive targets that
will be investigated is limited. The target values will be a € {0.05,0.1,0.2,0.5}.

false-positive target rates above 0.5 (50%) are not useful in a practical setting.

Proposed Ensemble Selection

Instead of simply selecting the best classifiers from the model library to form the
ensemble classifier, more complex selection algorithms can be used to build the en-
semble. The selection algorithms that will be investigated are described in Section
3.5.3. The proposed method used the Neyman-Pearson score as the objective func-
tion used to guide selection. Consequently, only a limited number of false-positive
targets will be investigated. Specifically, target values o = {0.05,0.1,0.2,0.5}. Due
to the magnitude of the model libraries searched in the original implementation of

the ensemble classifier (on the order of 500,000 models) and the necessity to process
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each false-positive target individually. it is extremely time consuming to perform se-
lection using the proposed methods. Consequently, the model library will be limited
to the best SVM configurations found for each antenna pair (at most 240 models)

to make the experiments conducted more feasible.
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Results

4.1 Peak Absolute Voltage Analysis

The system diagram in Figure 2.3 indicates that in the current radar screening
system, all amplification of signals occurs before the UWB pulse is transmitted by
the antennas, previous iterations of the system were also configured in a similar
way. Therefore, the strength of the transmitted, and consequently the recorded
signals is determined largely by the amount of amplification that is applied before
transmission. In addition, since the only other expected effect on the signal strength
was the attenuation that occurs as the pulse was propagated through the breast
tissue, it is reasonable to assume that the strength of the recorded signals is closely
related to the signal to noise ratios (SNRs) of the signals.

The higher the SNR, the less likely that components of the signal caused by
scattering in the breast tissue will be corrupted beyond recognition by noise. There-
fore, it is expected that, the stronger the signals in a data set are, the more likely
the difference between scans of without tumors and scans with tumors can be ob-
served. The following analysis results were computed using the data sets after the

pre-processing described in Section 3.2.

4.1.1 2014 Phantom Data Set

Before analysis, the signals in this data set were windowed as described in Section
3.2.1. Figures 4.1 to 4.4 show various measures relevant for our discussion later in

this chapter and are calculated from the signals obtained with tissue phantoms.
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Figure 4.1: Histogram of peak absolute voltage values of signals in the 2014
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phantom data set grouped by (a) transmitting antennas and (b) receiving
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Figure 4.3: Median peak absolute voltage of antenna pairs in 2014 phantom
data set sorted by antenna separation distance.
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Figure 4.4: Sorted (in descending order) median peak absolute voltages of
antenna pairs in 2014 phantom data set.

4.1.2 2014 Clinical Data Set

No additional pre-processing was performed on this data set before analysis. Figures
4.5 to 4.8 show measures needed for later analysis, calculated from the clinical data

obtained in 2014.
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Figure 4.5: Histogram of peak absolute voltage values of signals in the 2014
clinical data set.

- -

N §§ AR
| Ii
sl

250

o]

200 -

—_———————

————————

_—————
HHHHH—H

T_
|
|
|

Voltage (mV)
- =] M
o = &
B S a
—— — . —
HHIRH -
I
————
Voltage (mV)
o
=
T — — —

F-Tl F————— — -
Fe{l F—————— -

‘ i

I & ] L& |

| | |

‘ ! + i !
100 | % Pl 100 i &
| | | !
50 Q B g 50 H El B i
of b ¢ 1 Ll Q oLl ol L I Q L1 1]
1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Transmitting Antenna Receiving Antenna
(a) (b)

Figure 4.6: Box plots of peak absolute voltages of signals from the 2014 clin-
ical data set grouped by (a) transmitting antennas and (b) receiving antennas.
The red crosses indicate outliers from the distributions
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Figure 4.7: Median peak absolute voltage of antenna pairs in 2014 clinical
data set sorted by antenna separation distance.
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Figure 4.8: Sorted (in descending order) median peak absolute voltages of
antenna pairs in 2014 clinical data set.

4.1.3 Discussion: 2014 Clinical and Phantom Data Sets

The peak amplitude analysis demonstrates a similar distribution of signal amplitudes
between these two data sets. However there are some noticeable discrepancies.
Figure 4.1 shows that the peak amplitude values are clustered around 50 mV in the

2014 phantom data set. However, Figure 4.5 shows that the signal amplitudes in the
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2014 clinical data set the values are clustered around 25 mV. This variation may be
a consequence of the subjects scanned in each data set. Synthetic breast phantoms
may cause less attenuation of the signals than human breast tissue.

Both Figures 4.2 and 4.6 show significant variation in the peak signal amplitudes
of each data set. The ranges of outlier values in Figure 4.2 is smaller than the ranges
in Figure 4.6. This could be due to the difference in data set size. The 2014 clinical
data set comprises only 96 scans while the 2014 phantom data set comprises 292
scans. Consequently, some of the outliers in Figure 4.6 may only appear to be
outliers because of the small overall population size. Additionally, Figure 4.2 (b)
shows that there is a flaw in receiving antenna 11. This antenna was damaged when
the data set was collected and signals received by this antenna are omitted from
most analyses in this thesis.

Figures 4.3 and 4.7 show very noisy decreasing trends in median peak amplitudes
when they are sorted by distance. Both figures show a noticeable decreasing trend
as separation distance increases, despite the noise. Figures 4.4 and 4.8 show steep
drop-offs in median peak amplitude over the first 50 antenna pairs followed by a

more gradual decay over the remaining 190 pairs in both data sets.

4.1.4 2017 Clinical Data Set

The signals in this data set were windowed, then filtered as described in Section 3.2.
As in previous sub-sections, Figures 4.9 to 4.12 show measures for later analysis.

They were calculated from the 2017 clinical data set.
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Figure 4.9: Histogram of peak absolute voltage values of signals in the 2017
clinical data set.
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Figure 4.10: Box plots of peak absolute voltages of signals from the 2017
clinical data set grouped by (a) transmitting antennas and (b) receiving an-
tennas. The red crosses indicate outliers from the distributions
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Figure 4.11: Median peak absolute voltage of antenna pairs in 2017 clinical
data set sorted by antenna separation distance.
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Figure 4.12: Sorted (in descending order) median peak absolute voltages of
antenna pairs in 2017 clinical data set.

4.1.5 2017 Phantom Data Set

The signals in this data set were windowed and filtered as described in Section 3.2.
As in previous sub-sections Figures 4.13 to 4.16 show measures for later analysis.

They were calculated from the 2017 phantom data set.
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Figure 4.13: Histogram of peak absolute voltage values of signals in the 2017
phantom data set.
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Figure 4.15: Median peak absolute voltage of antenna pairs in 2017 phantom
data set sorted by antenna separation distance.

70

60 7

50 b

40 | 1

Voltage (mV)

20 7

D i i
0 50 100 150 200 250

Antenna Pair Rank (by Median Peak Amplitude)

Figure 4.16: Sorted (in descending order) median peak absolute voltages of
antenna pairs in 2017 phantom data set.

4.1.6 Discussion: 2017 Clinical and Phantom Data Sets

The peak absolute voltages of the signals in these data sets are significantly lower
than the signals for the 2014 data sets. Figures 4.11 and 4.13 show that the majority
of peak amplitude values are clustered around 5 or 10 mV and do not exceed 200

mV. On the other hand, the peak signal amplitudes of the 2014 data sets have
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histogram peaks around 50 and 25 mV and exceeded 350 mV. This suggests that
the SNR of the 2014 data sets is higher than that of the 2017 data sets.

The discrepancies between Figure 4.10 (a) and Figure 4.10 (b) show that there
was a lack of reciprocity between the transmitting and receiving lines of the switching
circuit used to record the 2017 clinical data. In other words, some of the strongest
transmitters are also some of the weakest receivers, e.g. antenna 14. Figure 4.14
shows a healthy reciprocity in the signal peak amplitudes once the new switching
circuit is installed. The distributions of the peak amplitudes for the 16 antennas
are similar when they are in both transmitting and receiving modes Sub figures (a)
and (b) are almost identical suggesting that each pair of antennas performs similarly
regardless of which antenna is transmitting and which one is receiving.

Figures 4.11 and 4.15 show a noisy decreasing trend with respect to increasing
separation distance. However, the trend is noticeably less noisy than the 2014 data
sets. In the 2017 data sets the median peak amplitudes drop off sharply from the
maximum. In both the clinical and phantom data sets less than 50 antenna pairs

have a median peak amplitude above 20 mV.

4.1.7 General Discussion

In all cases the peak amplitude analysis of these data sets show the similarity or
difference in the hardware used to record the scans. In particular the peak amplitude
distribution is closely related to the hardware. The 2014 data sets are very similar

to each other, but very different from the 2017 data sets.

4.2 Statistical Analysis Experiment Results

It is useful to investigate how the data produced by the radio-frequency radar equip-
ment responds to various types of scan subjects using the data sets described in Sec-
tion 3.1. The difference between scans of healthy breasts and breasts with suspicious
tissue present are of particular interest since this is closely related to the detection
of anomalies in the breast tissue using machine learning algorithms. Other subject
qualities that might affect the detection of anomalies, such as breast density, are

also worthy of analysis. In this section, the properties of the 2017 clinical data set
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are investigated. Features extracted from the scan signals of this data set using
methods described in Section 3.3 are analysed using high dimensional statistical hy-
pothesis tests (described in Section 3.4) to gain insight into how these features are
affected by the presence of anomalies in the breast tissue and variations in breast
density. Similar tests are also performed on data from the 2014 phantom data set
for comparison.

In these experiments we only consider the antenna pairs with the top 50 high-
est mean amplitudes. This is because in the RF radar system antenna pairs with
stronger signals are expected to have better SNRs and would therefore be more
likely to yield useful information when analysed. In addition, although the hypothe-
sis tests described in Section 3.4 are designed to work effectively when the dimension
of the population members (p) is higher than the size of the population (n), using
extreme values of p that might be obtained if signals from the entire scan are con-
catenated, (see Section 3.3), with the relatively small n = 71 available is unlikely to
yield more reliable results than using a subset of antenna pairs that are expected
to be the most informative. Using the 50 strongest antenna pairs results in the

dimension sizes shown in Table 4.1 for the feature sets described in Section 3.3.

Table 4.1: Length of feature vectors used in statistical hypothesis tests for
2017 clinical data set

Features | Dimension (p)
STFT 1050
DFT 1050
EMD 600
TDF 200

In the reported mean hypothesis test results, “SPU-\" refers to the test for that
particular value of A\ in the adaptive sum of powers test and “aSPU” refers to the
overall result of the test. In the reported dispersion tests, the “Permuted” test
refers to the p-value obtained by random permutation and “Observed” refers to the
p-value derived from the theoretical distribution. For all experiments we use a 5%

confidence level for null hypothesis rejection.
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4.2.1 Experiment 1: Healthy vs. Suspicious

In this experiment scans without anomalies (healthy) are compared to scans with
anomalies (suspicious). Since fibroglandular tissue is known to have a higher permit-
tivity than adipose tissue [14]-[16], the dielectric contrast between tumorous tissue
and the rest of the breast tissue is likely to be lower for breasts with high con-
centration of fibroglandular tissue. This would decrease the amount of scattering
observed in the radar scan. To account for this effect and to observe the degree to
which it affects the difference between healthy and suspicious scan data, the scans
are also partitioned into two breast density groups for this experiment. The first
group comprises the two lower BI-RADS density groups (1 and 2), the other group
comprises the higher density groups (3 and 4). The sizes of each population are

shown in Table 3.2.

Experiment 1A: Healthy vs. Suspicious Means

In the first part of the experiment the means of the healthy and suspicious popula-
tions are compared using the adaptive sum of powers tests described in [70]. The
null hypothesis for this experiment is that the means of each population are the
same. The alternative hypothesis for this experiment is that the means of each

population are different.

Table 4.2: Results (p-values) for healthy versus suspicious means hypothesis
test for scans with breast density in groups 1 and 2 (low-density) from the
2017 clinical data set. P-values less than 0.05, which indicate that the result
is statistically significant are shown in red.

Test STFT DFT EMD TDF
SPU-1 0.9 0.6 0.2 0.2
SPU-2 0.7 0.7 0.7 0.8
SPU-3 0.9 >0.9 0.7 0.9
SPU-4 0.7 0.7 0.7 0.7
SPU-5 | >09 >09 >09 >09
SPU-6 0.6 0.6 0.6 0.6
SPU-c0 0.5 0.6 <0.001 0.2
aSPU 0.9 >0.9 0.002 0.5
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Table 4.3: Results (p-values) for healthy versus suspicious means hypothesis
test for scans with breast density in groups 3 and 4 (high-density) from the
2017 clinical data set. P-values less than 0.05, which indicate that the result
is statistically significant, are shown in red.

Test STFT  DFT EMD TDF
SPU-1 | 4e-05 1le-06 3e-10 5e-07
SPU-2 | le-16 4e-09 <le-16 <le-16
SPU-3 | 4e-16 le-14 <le-16 <le-16
SPU-4 | 1le-16 Te-14 <le-16 <le-16
SPU-5 | 3e-14 <le-16 <le-16 <le-16
SPU-6 | 3e-11 5e-16 <le-16 <le-16

SPU-0c0 | 9e-07 4e-04 2e-04 le-07
aSPU | 3e-16 <le-16 <le-16 <le-16

Table 4.4: Results (p-values) for healthy versus suspicious means hypothesis
test for all scans in the 2017 clinical data set.

Test

STFT DFT EMD TDF

SPU-1
SPU-2
SPU-3
SPU-4
SPU-5
SPU-6
SPU-c0
aSPU

0.6 0.08 0.1 0.4

0.8 0.7 0.7 0.8

0.7 0.7 0.6 0.8

0.7 0.7 0.7 0.7

09 >09 >09 >09
0.6 0.6 0.6 0.6

0.8 >09 02 0.8
>09 04 04 >09

Experiment 1B: Healthy vs. Suspicious Dispersions

In the second part of the experiment, the dispersions of each population were com-

pared using the hypothesis test described in [71]. The null hypothesis for this ex-

periment is that the dispersions of each population are the same. The alternative

hypothesis for this experiment is that the dispersions of each population are differ-

ent.

Table 4.5: Results (p-values) for healthy versus suspicious dispersion hypoth-
esis test for scans with breast density in groups 1 and 2 (low-density) from the

2017 clinical data set.

Test

STFT DFT EMD TDF

Permuted
Observed

0.7 0.8 0.4 0.8

0.7 0.8 0.4 0.8
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Table 4.6: Results (p-values) for healthy versus suspicious dispersion hypoth-
esis test for scans with breast density in groups 3 and 4 (high-density) from
the 2017 clinical data set.

Test STFT DFT EMD TDF
Permuted 0.3 0.4 0.2 0.4
Observed 0.3 0.4 0.2 0.4

Table 4.7: Results (p-values) for healthy versus suspicious dispersion hypoth-
esis test for scans all scans in the 2017 clinical data set.

Test STFT DFT EMD TDF
Permuted 0.2 0.5 0.07 0.3
Observed 0.2 0.5 0.07 0.3

Discussion

In Experiment 1A, populations containing only features extracted from healthy
scans are compared to populations containing only features extracted from sus-
picious scans. Statistically significant results (results which indicate that the null
hypothesis should be rejected) were only obtained for the tests involving low-density
scans or high-density scans exclusively. For the tests involving low-density scans the
only significant result was produced by the EMD features. Of the sum of powers
tests performed, the most significant result was produced by the supremum test.
The significance of the supremum test compared the lack of significance shown by
the other tests suggests that a single feature is responsible for the statistical signif-
icance observed. The feature that produced the largest difference was the kurtosis
of the 3rd IMF from the antenna pair TX14-RX8. For the tests involving only the
high-density scans all the results were significant for all features with very high con-
fidence in all cases. None of the results of the tests involving all of the scans were
significant. This suggests that the variations in the population means for low and
high-density scans are different, in fact they appear to be conflicting in all cases
except that of the DFT features. In the majority of cases, the significance of the
results for the combined data set is lower than the results for the isolated low and
high-density scans. This variation in differences may arise because the difference
in the breast tissue density changes the average permittivity of the breast tissue

and consequently changes the way anomalies in the tissue cause scattering. The
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scattering caused by these anomalies may be captured more effectively by differ-
ent features in low and high breast density scans. However, since a lower breast
density would increase the dielectric contrast between anomalies such as tumors,
it is expected that there would be more scattering present in these scans and thus
larger differences would be observed in the features from the healthy and suspicious
populations. In this case, the opposite appears to be true. Figures 4.17 to 4.24
show the distribution absolute mean features difference values between healthy and
suspicious scan features, for each data set partition in the form of line graphs over
feature indices and histograms. They indicate that, for all feature types, the differ-
ence between healthy and suspicious high-density breast scans is greater on average
than this difference for low-density breasts. This supports the results observed in

Tables 4.2 and 4.3.
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Figure 4.17: Absolute mean feature differences between healthy and suspi-
cious scan STFT features extracted from the low-density scans only (in solid
blue) and the high-density scans only (in dashed red).
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Figure 4.18: Histogram of absolute mean feature differences between healthy
and suspicious scan STFT features extracted from low-density scans only (blue
triangles) and high-density scans only (red circles). Values on the x-axis are
the histogram bin centers.
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Figure 4.19: Absolute mean feature differences between healthy and suspi-
cious scan DFT features extracted from the low-density scans only (in solid
blue) and the high-density scans only (in dashed red).
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Figure 4.20: Histogram of absolute mean feature differences between healthy
and suspicious scan DFT features extracted from low-density scans only (blue
triangles) and high-density scans only (red circles). Values on the x-axis are
the histogram bin centers.
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Figure 4.21: Absolute mean feature differences between healthy and suspi-
cious scan EMD features extracted from the low-density scans only (in solid
blue) and the high-density scans only (in dashed red).
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Figure 4.22: Histogram of absolute mean feature differences between healthy
and suspicious scan EMD features extracted from low-density scans only (blue
triangles) and high-density scans only (red circles). Values on the x-axis are
the histogram bin centers.
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Figure 4.23: Absolute mean feature differences between healthy and suspi-
cious scan TDF features extracted from the low-density scans only (in solid
blue) and the high-density scans only (in dashed red).
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Figure 4.24: Histogram of absolute mean feature differences between healthy
and suspicious scan TDF features extracted from low-density scans only (blue
triangles) and high-density scans only (red circles). Values on the x-axis are
the histogram bin centers.

In Experiment 1B, none of the results of the tests performed were statistically
significant. The wide variation in the significance of the results for the low, high
and combined density tests suggests as before that aspects of the feature dispersions
that separate the healthy and suspicious scans are different for low and high-density
scans.

This large difference between the results may be an indication that the multistatic
radar system used to collect the scans is more suited for breasts of higher density and
that a different approach must be taken for breasts with lower density. However, this
conclusion should be drawn with reservation given the small populations in these

tests (Table 3.2).

4.2.2 Experiment 2: Breast Density

In this experiment, features extracted from scans of low-density breasts are com-
pared to features extracted from scans of high-density breasts. In each part of the
experiment, to control for healthy versus unhealthy tissue, three tests were executed.
Firstly, only the healthy scans were included in each population. Secondly, only sus-

picious scans were used. Thirdly, both healthy and suspicious scans were included
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in the populations.

Experiment 2A: Breast Density Means

In the first part of the experiment the means of the low-density (group 1 & 2)
and high-density (group 3 & 4) populations are compared using the adaptive sum
of powers tests described in [70]. The null hypothesis for this experiment is that
the means of each population are the same. The alternative hypothesis for this
experiment is that the means of each population are different.
Table 4.8: Results (p-values) for low-density versus high-density mean hy-
pothesis test for healthy scans only from the 2017 clinical data set. P-values

less than 0.05, which indicate that the result is statistically significant, are
shown in red.

Test | STFT DFT EMD TDF
SPU-1 0.3 0.8 0.5 0.8
SPU-2 0.5 0.3 0.4 0.4
SPU-3 0.9 0.4 0.7 0.8
SPU-4 0.6 0.4 0.6 0.6
SPU-5 | >09 0.6 0.9 0.9
SPU-6 0.6 0.5 0.6 0.6
SPU-co | 0.04 0.03 0.01 0.2
aSPU 0.2 0.08 0.03 0.5

Table 4.9: Results (p-values) for low-density versus high-density mean hy-
pothesis test for suspicious scans only from the 2017 clinical data set. P-values
less than 0.05, which indicate that the result is statistically significant, are
shown in red.

Test STFT DFT EMD TDF
SPU-1 | 4e-05 1e-03 1e-07 2e-05
SPU-2 | 4e-07 7e-08 2e-14 1le-12
SPU-3 | 2e-08 5e-05 2e-09 6e-08
SPU-4 | 6e-07 1e-02 1e-06  9e-06
SPU-5 | 9e-08 0.2 2e-03  2e-03
SPU-6 | 1e-05 0.3 3e-02  3e-02

SPU-00 | 5e-10  5e-06  T7e-07  3e-07
aSPU | 1e-09 4e-07 7Te-14 6e-12
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Table 4.10: Results (p-values) for low-density versus high-density mean hy-

pothesis test for all scans in
which indicate that the resu

the 2017 clinical data set. P-values less than 0.05,
It is statistically significant, are shown in red.

Test | STFT DFT EMD TDF
SPU-1 0.4 0.1 0.2 0.8
SPU-2 0.1 0.03 0.08 0.1
SPU-3 0.8 <0.001 0.2 0.6
SPU-4 0.4 0.001 0.3 0.4
SPU-5 | >0.9 <0.001 0.6 0.7
SPU-6 0.5 <0.001 0.4 0.5
SPU-c0 | 0.03 0.02 0.4 0.1
aSPU 0.1 <0.001 0.3 0.3

Experiment 2B: Breast Density Dispersions

In the second part of the experiment, the dispersions of each population were com-

pared using the hypothesis test
iment is that the means of each

for this experiment is that the

described in [71]. The null hypothesis for this exper-
population are the same. The alternative hypothesis

means of each population are different.

Table 4.11: Results (p-values) for low-density versus high-density dispersion
hypothesis test for healthy scans only from the 2017 clinical data set.

Test

STFT DFT EMD TDF

Permuted
Observed

0.7 0.3 0.7 0.5
0.7 0.3 0.7 0.5

Table 4.12: Results (p-values) for low-density versus high-density dispersion
hypothesis test for suspicious scans only from the 2017 clinical data set.

Test

STFT DFT EMD TDF

Permuted
Observed

>0.9 0.06 0.8 0.8
>0.9 0.05 0.8 0.8

Table 4.13: Results (p-values) for low-density versus high-density dispersion

hypothesis test for all scans

in the 2017 clinical data set.

Test

STFT DFT EMD TDF

Permuted

Observed

0.9 0.05 04 0.5
0.9 0.05 0.4 0.5
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Discussion

In Experiment 2A, the only significant result for the tests involving only healthy
scans was the result for the EMD features. This result was a consequence of a
very significant supremum test result. The specific EMD feature that produced the
maximum difference between the population means was the kurtosis of the 3rd IMF
of the signal produced by antenna pair TX14-RX12. This result and the similar
result obtained for the low-density scans in Experiment 1A seem to suggest that
the kurtosis of the 3rd IMF is a particularly informative feature. For the tests
involving only suspicious scans, all the results were significant. The reason for this
is unclear considering the results of the other data set partitions. Table 3.2 shows
that these population sizes are small, therefore it is relatively easy for this to be the
result of random coincidence. For the tests involving all the scans in the data set,
only the DFT features yielded a significant result. This may be because variations
in breast density correspond to variations in the average dielectric properties of
the breast tissue which may be readily observed in the frequency content of the
recorded signals since the degree to which some frequencies are attenuated may
vary significantly with the dielectric properties.

In Experiment 2B, the only significant result was produced by the DFT features.
This, in addition to the results of Experiment 2A, particularly those in Table 4.10
suggest that DFT features may be the most appropriate features for differentiating

between low-density and high-density breasts.

4.2.3 Experiment 3: Healthy vs. Suspicious for 2014 Phan-

toms

In this experiment, the tests in Experiment 1 are repeated on the 2014 phantom
data set. Since this data set was collected in a more controlled environment than
the 2017 clinical data and is known to be easy to classify using machine learning
algorithms [46], [53], it is used to provide insight into these tests and what they may
yield under more ideal measurement conditions. Table 4.14 shows the dimensionality

of each feature set for the 2014 phantom data set.
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Table 4.14: Dimensions of feature vectors used in statistical hypothesis tests
for 2014 phantom data set

Features

Dimension (p)

STFT
DFT
EMD

TD

600
200

1500
1100

Experiment 3A: Healthy vs. Suspicious Means

In the first part of the experiment the means of the healthy and suspicious popula-

tions are compared using the adaptive sum of powers tests described in [70]. The

null hypothesis for this experiment is that the means of each population are the

same. The alternative hypothesis for this experiment is that the means of each

population are different.

Table 4.15: Results (p-values) for healthy scan versus suspicious scan means
in the 2014 phantom data set. P-values less than 0.05, which indicate that the
result is statistically significant, are shown in red.

Test STEFT DFT EMD TDF
SPU-1 0.1 0.004 le-06  <le-10
SPU-2 | <le-10 <le-10 1le-04 <le-10
SPU-3 | <le-10 <le-10 0.5 <le-10
SPU-4 | <le-10 <l1e-10 0.4 <le-10
SPU-5 | <le-10 <le-10 0.8 <le-10
SPU-6 | <le-10 <le-10 0.5 <le-10
SPU-c0 | <le-10 <le-10  Te-10 <le-10
aSPU | <le-10 <1le-10 2e-09 <1le-10

Experiment 3B: Healthy vs. Suspicious Dispersion

In the second part of the experiment, the dispersions of each population were com-

pared using the hypothesis test described in [71]. The null hypothesis for this ex-

periment is that the dispersions of each population are the same. The alternative

hypothesis for this experiment is that the dispersions of each population are differ-

ent.
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Table 4.16: Results (p-values) for healthy scan versus suspicious scan dis-
persions in the 2014 phantom data set. P-values less than 0.05, which indicate
that the result is statistically significant, are shown in red.

Test STFT DFT EMD TDF
Permuted | 0.001 0.001 0.9 0.001
Observed | le-17 3e-34 0.9  3e-36

Discussion

In Experiment 3A, all feature sets yielded statistically significant results (from the
aSPU adaptive tests). This suggests that the healthy and suspicious scan features are
drawn from distributions with different means. In Experiment 3B, all the feature sets
except the EMD features yielded statistically significant results. This suggests that
the distributions of the healthy and suspicious scans are drawn from have different
dispersions as well as means (indicated by Experiment 3A).

In both parts of Experiment 3, the EMD features yielded the least significant
results. This could be due to the adaptive nature of the EMD time-frequency de-
composition algorithm. Since the algorithm computes IMFs on a per-signal basis
the information captured in each IMF might vary somewhat from signal to signal.
Figure 4.25 shows the standard variation in the peak frequency of the first 4 IMFs
extracted from the signals from selected antenna pairs of the 2014 phantom data set.
A significant portion of the IMFs show large variation, specifically standard devia-
tions between 10 and 30 GHz. In addition Figure 4.26 shows that half of the IMF's
exhibit this high variance in peak frequency. This variation may act as noise that
limits the difference that can be observed between tumor-bearing and tumor-free

scans.
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Figure 4.25: Standard deviation of peak frequencies of first 4 IMF's of signals
from the selected antenna pairs in the 2014 phantom data set. Many of the
IMF's demonstrate a large variation in peak frequency, in the range of 10 to

30 GHz.
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Figure 4.26: Histogram of standard deviation of peak frequencies of first 4

IMF's of signals

from the selected antenna pairs in the 2014 phantom data set.

Half of the IMF's have a peak frequency standard deviation of over 10 GHz.

Overall, these Experiment 3 results indicate that each of these feature extraction

methods encapsulate information that can be used to differentiate between scans

with anomalies present and scans without anomalies present. However, Experiment
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1 shows that they were not as effective when applied to the 2017 clinical data
set. This may be due to poor signal quality resulting from the relative lack of

environmental control the 2017 clinical data set was collected under.

4.2.4 Experiment 4: Healthy vs. Suspicious for 2017 Phan-

toms

In this experiment, the tests in Experiment 1 are repeated on the 2017 phantom
data set. As with the 2014 phantom data set, this data set was collected in a
more controlled environment than the 2017 clinical data. However this data was
collected with very similar hardware to the 2017 clinical data set with the exception
of the switching circuit and the ring bra. These results are intended to explore how
the results change in a controlled environment with a larger number of scans and
synthetic breast phantoms instead of human breasts. Since the data windowing size
and sampling frequency of this data set are the same as those of the 2017 clinical
data set, the dimensionality of the feature vectors are the same as those in Table

4.1.

Experiment 4A: Healthy vs. Suspicious Means

In the first part of the experiment the means of the healthy and suspicious popula-
tions are compared using the adaptive sum of powers tests described in [70]. The
null hypothesis for this experiment is that the means of each population are the
same. The alternative hypothesis for this experiment is that the means of each

population are different.

Table 4.17: Results (p-values) for healthy scan versus suspicious scan means
in the 2017 phantom data set.

Test STFT DFT EMD TDF
SPU-1 0.8 >0.9 >09 >09
SPU-2 0.9 0.9 0.9 0.9
SPU-3 | >0.9 >09 >09 >0.9
SPU-4 0.8 0.7 0.8 0.7
SPU-5 | >09 >09 >09 >09
SPU-6 0.6 0.6 0.7 0.6
SPU-c0 | >0.9 >09 >09 >09
aSPU | >0.9 >0.9 >0.9 >0.9
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Experiment 4B: Healthy vs. Suspicious Dispersions

In the second part of the experiment, the dispersions of each population were com-
pared using the hypothesis test described in [71]. The null hypothesis for this ex-
periment is that the dispersions of each population are the same. The alternative
hypothesis for this experiment is that the dispersions of each population are differ-

ent.

Table 4.18: Results (p-values) for healthy scan versus suspicious scan dis-
persions in the 2014 phantom data set.

Test STFT DFT EMD TDF
Permuted | >0.9 0.8 >0.9 0.6
Observed | >0.9 0.8 >0.9 0.6

Discussion

None of the experiment results were significant. This is unexpected considering that
the 2017 clinical data set results were more significant in several cases. These results
could be due to the overall low signal amplitude of the data set. Consistently low
amplitude signals could be an indication of a low SNR. Therefore it may be difficult
to extract useful information from the signals in this data set. This may be an
indicator for the next system prototype that, within safety margins, higher power
may be used to increase the signal SNR and ultimately improve the system’s anomaly

detection capabilities.

4.2.5 Experiment 5: Effect of Incorrect Signal Windowing

During initial observations of the signals of the 2017 clinical data set, the conclusion
was incorrectly drawn that the first signal pulse (see Figure 3.1) was the segment
of the signal that contained the most useful information. However, before this
error was corrected several tests similar to Experiments 1, 2 and 3 were conducted
using a windowing strategy that isolated that pulse. This section presents a sample
of these results for comparison to the results produced by selecting the correct
signal portion. The reason this comparative data is presented is that, in general,
groups that study microwave radar for breast cancer detection all appear to face the

challenge of correctly windowing the region of interest for further processing.
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In this experiment, the means of the healthy and suspicious populations are
compared using the adaptive sum of powers tests described in [70]. The null hy-
pothesis for this experiment is that the means of each population are the same. The
alternative hypothesis for this experiment is that the means of each population are

different.

Table 4.19: Results (p-values) for healthy versus suspicious scan means in
the 2017 clinical data set when incorrect windowing is used.

Test STFT DFT EMD
SPU-1 0.6 0.5 0.7
SPU-2 0.7 0.7 0.8
SPU-3 0.9 >0.9 >0.9
SPU-4 0.6 0.7 0.6
SPU-5 | >0.9 >0.9 >09
SPU-6 0.6 0.6 0.6
SPU-c0 | >0.9 >09 >0.9
aSPU | >0.9 >0.9 >0.9

Discussion

The results of Experiment 5 are all insignificant. They suggest a higher degree of
similarity between populations than the previous experiments. This is because, in
this case, the portion of the signal that was used to generate the features did not
contain any information about the subject being scanned. The initial pulse of the
scan signals was determined to be strictly due to cross talk between the transmitting
and receiving sides of the switching circuit as the pulse was being transmitted.

Consequently there was no useful information the signals to begin with.

4.3 Machine Learning Experiment Results

4.3.1 Problem Statement

Our goal is to detect the presence of tumorous tissue in a human breast by analyzing
a radio-frequency radar scan of the breast recorded using a hardware system like
the one described in [46].

Each scan S; comprises signals s;;, recorded by an array of N, transceiving

antennas where j € {1,...N,(N, — 1)}. Each antenna transmits a pulse and the
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other antennas receive the signal, transmitted through and scattered by the breast
tissue. Thus for each scan S;, there are N,(NV, — 1) signals. We can extract a matrix
of features X; from each scan S; which comprises vectors Z;; corresponding to each
signal s;; in the scan. Given a set of M scans represented by N, (N, — 1) by N,
matrices, {Strain1; ---Strainn }, Which yield a set of N,(N, —1) by Ny feature matrices
{Xtraints - Xerainy + and a set of labels {Yi qint, ---Yirainar } which indicate whether
there was a tumor present in the breast tissue that produced each of these M scans,
we would like to train a model that can predict the label Y., of a new scan, S,c.
based on the feature array X,., generated from this new scan. The dimensions
N and Ny depend on the the signal pre-processing and feature extraction methods

used, respectively.

4.3.2 Receiver Operating Characteristic Evaluation

The ensemble classifier is trained using the éyp metric, described in Section 3.5.4,
Equation 3.21, to guide the selection of base models. The false-positive target rate,
a, controls the weight placed on false-positive errors made by the base models and
consequently, influences the receiver operating characteristic (ROC) of the overall
ensemble classifier. By varying the o parameter over a range of values and evalu-
ating the ensemble trained at each éyp metric corresponding to each value, we can
generate an ROC curve for the classifier. This allows differently configured or modi-
fied classifiers to be compared using the ROC curve’s area-under-curve (AUC) value.
However, in practice the curves produced by these experiments are not smooth or
monotonic. Therefore, to get an ROC that can be more easily interpreted, the false-
positive and true-positive values produced are first sorted by false-positive value,
averaged if there are duplicate false-positive values and then linearly interpolated
between the monotonic true-positive values observed and the conventional ROC

curve endpoints (0,0) and (1,1).

4.3.3 Feature Comparison Experiment

In this section, the results of an experiment comparing the features proposed in Sec-
tion 3.3 to the previously proposed PCA feature extraction method are presented.

The feature extraction methods were compared using data from the 2014 clinical
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data set and the 2017 phantom data set. In this experiment, the predictive perfor-
mance of the ensemble classifier was evaluated in terms of the AUC of the classifier’s
ROC curve. Two classification trials were considered equivalent if their AUC scores
were within £0.05 of each other since in this case it was found to be very difficult
to distinguish between most ROC curves. The objective of this experiment was to

test the following hypothesis.

Hypothesis

Performing a classification task using each of the features proposed in Section 3.3
will yield equivalent or better performance than using principal component analysis

to generate features.

Results

The true-positive and false-positive rates for the ROC curve were generated by
training and evaluating ensembles over 12 train-test folds from the 2014 clinical
data set, where each test set comprised the scans from a single volunteer as in
[46]. The 101 false-positive target rates used in [46] were used. In addition, the
median peak amplitude threshold for antenna inclusion was set to 20 mV also as in
[46], consequently the classifier only used features from the 185 strongest antenna
pairs. Figure 4.27 shows the ROC curves for classification trials using each feature
extraction method. Table 4.20 shows the AUC values corresponding to the curves

in Figure 4.27.
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Figure 4.27: ROC curves produced by the ensemble classifier, when executed
on 2014 clinical data set, using feature extraction methods described in Section
3.3.

Table 4.20: Area under curves for ROC curves shown in Figure 4.27. The
actual AUC values are listed in the second column and the AUC values relative
to the AUC yielded when PCA was used are listed in the third column.

Feature Extraction | Actual AUC | Relative AUC
PCA 0.58 -
STFT 0.70 +0.12
DFT 0.72 +0.14
EMD 0.69 +0.11
TDF 0.67 +0.09

Discussion

On the 2014 clinical data set, PCA performs notably worse than the other algorithms
with only an AUC of 0.58. On the other hand, the performances of the other feature
extraction methods were equivalent. Their AUC values were all within a 0.05 range.
Therefore, the results of this experiment support the hypothesis.

These results suggest that PCA is not well suited for this data set. However, the
results reported in [46] indicate significantly better performance using PCA features.
This may be because the 2v-SVM base models used in that implementation allow
more fine-grained control over the false-positive and false-negative rates than the

scikit-learn SVC [74] implementation used in this thesis. Since no other feature
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extraction methods are considered in [46], this neither supports or contradicts the
hypothesis of this experiment.

The STFT features yielded the second best performance in this comparison ex-
periment and represent an easily interpretable time-frequency decomposition of the
radar signals. For these reasons, STFT features were used in the majority of the

experiments in this section.

4.3.4 Hyperparameter Search Experiment

In this section, the hyperparameter search algorithms described in Section 3.5.2
are compared to the grid search (GS), used in the previous implementation, in the
context of building model libraries. Specifically, the search algorithms are being
evaluated as tools for rapidly finding good hyperparameter configurations to build
the model library that the model ensemble is selected from. In this experiment, the
predictive performance of the ensemble classifier was defined in terms of the average
Neyman-Pearson score achieved by the classifier over all test sets. The runtime
performance was defined in terms of the average time (in minutes) required to select
and train an SVM ensemble. The objective of this experiment is to test the following

hypotheses.

Hypothesis 1

Using each of the hyperparameter search methods proposed in Section 3.5.2 will
yield equivalent or better predictive performance than using using an exhaustive
grid search (over the hyperparameter grid in Table 3.4) to generate the model library

used to build the ensemble.

Hypothesis 2

Using each of the hyperparameter search methods proposed in Section 3.5.2 will
yield a faster average ensemble training time than using an exhaustive grid search

to generate the model library used to build the ensemble.
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Search Algorithm Configurations

In these experiments, the parameters of the search algorithms were tuned manually
over several trial runs to prioritize exploration over exploitation since the goal in
this experiment was to use the search algorithms to find a collection of good models
rather than to simply find the best individual model. Ideally a more extensive
investigation of parameter configurations would have been done, but due to time
constraint, this was not possible. Each search algorithm in this experiment was
given a budget of 1000 function evaluations. This number was selected to ensure
the amount of computation preformed was reduced from the expected 4620 function

evaluations performed by the grid search.

General For all search algorithms the maximum number of function evaluations
was limited to 1000 evaluations. This was the only parameter that needed to be
selected for the random search (RS) and random walk (RW) algorithms. The pa-

rameters selected for the other algorithms are described hereafter.

Simulated Annealing (SA) The initial temperature for this algorithm was set
to 10,000 and the decay factor a = 0.98. The temperature is initialized to this
relatively high value to encourage exploration, especially in the early iterations of
the algorithm. Similarly, the decay factor is set to a value very close to 1 so that

the temperature decays gradually over the 1000 function evaluation budget.

Genetic Algorithm (GA) The mutation rate was set to 0.5. This means one half
of the parameters in each chromosome were randomly modified. This is a relatively
high mutation rate and was chosen to encourage exploration. The mutation factor
b was set to 2.5. This value is quite a bit smaller than in [86], it was also chosen
to encourage exploration since it essentially controls the decay of the chromosome
mutations. The population size was 100. This population size was found to work

well in practice.

Particle Swarm (PS) The individual coefficient ¢; was set to 3 and the social
coefficient ¢y was set to 1, this was done to encourage particle to explore their local

regions of the search space, rather than to rapidly converge to a single region. The
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inertia was set to a fixed value of w = 0.5. The particle population was set to 10.

This population size was found to work well in practice.

Results

The Neyman-Pearson scores for ensembles generated over 12 train-tests folds from
the 2014 clinical data set were computed. Each test set comprised the scans from
a single volunteer as in [46]. A false-positive target rate of 0.05 was used in this
experiment. Only a single value was investigated due to time constraint. In ad-
dition, since most of these search algorithms have some random component, the
classification task was repeated 10 times for each search algorithm. The average
énp values over the 12 test folds, from each of the 10 trials were used to generate
box plots of the Neyman-Pearson scores. The median peak amplitude threshold for
antenna inclusion was set to 20 mV also as in [46], consequently the classifier only
used features from the 185 strongest antenna pairs. The STFT feature extraction
method was used. Each trial was run on a computing cluster with the following
resources allocated: 10 Intel Xeon CPUs @ 2.7 GHz and 50 GB of RAM. The hy-
perparameter searches for each antenna pair were performed asynchronously (in a

non-serial order) to take advantage of the computing resources.

Neyman-Pearson Score (a = 0.05)

Figure 4.28: Boxplot of average Neyman-Pearson scores over 10 trials for
each hyperparameter seach method. Outliers are shown as blue diamonds.
The dashed red line represents the Neyman-Pearson score achieved by the
classifier when an exhaustive grid search is used.
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Table 4.21: Average ensemble train time achieved using each of the hyperpa-
rameter search methods described in Section 3.5.2 to build the model libraries.
The actual average training time is shown in the second column. The third
column shows the time relative to the avarage training time when GS is used.

Search Method | Actual Time (mins) | Relative Time (mins) | Improvement Factor

GS 29.46 - -

RS 7.33 -29.46 4.02
RW 7.61 -21.85 3.87
SA 7.73 -21.73 3.81
GA 7.63 -21.83 3.86
PS 7.35 -21.11 4.00

Discussion

Figure 4.28 indicates that at a false-positive target rate of 0.05, Some of the search
algorithms are consistently able to achieve even better predictive performance than
the exhaustive grid search. Specifically, RS, GA and PS yielded consistently lower
average éyp. Therefore, Hypothesis 1 is satisfied for these 3 search algorithms. On
the other hand both RW and SA consistently produced larger éyp scores than the
exhaustive grid search.

Additionally, since the search algorithm parameters have not been explored more
extensively, it is difficult to conclude whether certain algorithms are superior to
others. These results should be considered an initial investigation.

Table 4.21 shows that, when a computational budget is enforced, Hypothesis 2
is satisfied for all search algorithms evaluated. All algorithms outperformed the GS
by 21.73 minutes, (a factor of 3.81), or greater. This is because these algorithms
only explore a fraction of the search space and therefore do not require as much
computation as the GS. While each search algorithm only performs less than a
quarter of the cross-validations that GS does, the additional overhead likely prevents
the improvement factor from being larger.

When a classification task is performed over a larger range of false-positive target
values, the advantage of using one of the hyperparameter search methods is lost.
This is because each false-positive target rate requires a separate hyperparameter
search to be executed. However, only a single exhaustive grid search needs to be
performed for all false-positive target rates since its behavior is independent of the

false-positive target rate.
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4.3.5 Ensemble Model Library Experiment

In order to evaluate the performance of the ensemble selection method described
in Section 3.5.3, only the best models from each antenna pair will be used to build
the model library. This reduces the range of models available for ensemble selection
significantly, but allows experiments over a range of false-positive target rates to be
executed in a feasible amount of time. Because the number of models available for
selection is reduced significantly, the change in performance relative to the previous
selection method is evaluated in this section. In this experiment, the predictive per-
formance of the ensemble classifier was defined in terms of the AUC of the classifier’s
ROC curve. Two classification trials were considered equivalent if their AUC scores
were within 4+0.05 of each other. The objective of this experiment is to test the

following hypothesis.

Hypothesis

The predictive performance of the ensemble classifier when a model library compris-
ing only the best models from each antenna pair is used is equivalent or better than
the performance when a model library comprising all the models from each antenna

pair is used.

Results

The true-positive and false-positive rates for the ROC curve were generated by
training and evaluating ensembles over 12 train-tests folds from the 2014 clinical
data set, where each test set comprised the scans from a single volunteer as in [46].
The 101 false-positive target rates used in [46] were used. In addition the median
peak amplitude threshold for antenna inclusion was set to 20 mV also as in [46],
consequently the classifier only used features from the 185 strongest antenna pairs.
The STFT feature extraction method was used. Table 4.22 shows the AUC values

for the curves in Figure 4.29.

85



Chapter 4 Collin A. Joseph

— Al

1.07 Best Only L
. J

0.8
0.6

0.4 4

True Positive Rate

0.2 4

0.0 1 T

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4.29: Receiver operating characteristic for 2014 clinical data using all
models and only the best models from each antenna pair to build the model
library.

Table 4.22: AUC values corresponding to ROC plots in Figure 4.29. The
actual AUC values are listed in the second column and the AUC value relative
to the AUC yielded when all models were used are listed in the third column.

Library Building Method | Actual AUC | Relative AUC
All Models 0.70 -
Best Models 0.72 +0.02

Discussion

The results shown in Figure 4.29 and Table 4.22 indicate that the predictive perfor-
mance of the ensemble classifier when only the best models from each antenna-pair
are used to build the model library is approximately equivalent to the performance

when all models are used to build the model library.

4.3.6 Individual Hyperparameter Search Experiment

It is more effective to use an exhaustive grid search when performing a classification
task over a range of false-positive target rates. If a classification task is performed at
a fixed false-positive rate, then the results of Section 4.3.4 indicate that is much more
efficient to use a hyperparameter search method instead. In addition, the results

of Section 4.3.5 indicate that building model libraries using only the best models
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from each antenna pair is as effective as building the libraries using all hyperparam-
eter configurations. The hyperparameter search methods can be used to find these
models for each antenna pair. Therefore it is advantageous to determine which hy-
perparameter search method is able to find the best models. The hyperparameter
search methods described in Section 3.5.2, with some of configurations described in
Section 4.3.4, were compared to determine which method was best suited for this

task.

Modified Configurations

The GA and PS algorithms were tuned to prioritize exploration over exploitation in
Section 4.3.4. In this experiment we would like to simply determine which search
methods is able to find the best individual hyperparameter configuration. Over

several trial runs, this task was found to benefit from a more balanced configuration.

Genetic Algorithm The population size was 100 as before. The mutation rate
was set to 0.25. This means one quarter of the parameters in each chromosome
were randomly modified, as opposed to half in Section 4.3.4. This prevents more
potentially good solutions from being lost due to random mutations. The mutation
factor b was set to 5. This causes the aggressiveness to the mutations to decay faster
also allowing good solutions found in the later stages of the search to be preserved

more often.

Particle Swarm The particle population was set to 10, as before. The individual
coefficient ¢; was set to 2 and the social coefficient ¢y was set to 2, the similarity
between coefficient values provides a more balanced compromise between exploration
and exploitation. The initial inertia was set to w = 1 and was linearly decayed
at a rate of 0.01 per iteration. This results in a linear decay to 0 by the final
function evaluation. This decay prevents good solutions found in the neighborhoods
of particles in the later stages of the search to be ignored because particles have too

much inertia.
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Results

Each search method was limited to 1000 objective function evaluations. The objec-
tive function in this case was the average Neyman-Pearson score (Equation 3.21)
yielded from cross validation of the model being evaluated over the available data.
The data set used to evaluate these algorithms was the 2014 clinical data set. The
STFT feature extraction method was used on the data set. The data set was par-
titioned into multiple train/test folds. The scans from each volunteer were grouped
together as a test fold and the remaining scans corresponding to each set were used
as training data. The best éyp scores from each antenna pair were recorded then
averaged to obtain a score for each false-positive target rate. The false-positive tar-
get rates used were 0.05, 0.1, 0.2 and 0.5. The median peak amplitude threshold
for antenna inclusion was set to 20 mV also as in [46], consequently only features
from the 185 strongest antenna pairs were considered. Figure 4.30 shows the results
of this experiment. Only the genetic algorithm and the particle swarm algorithms
preform better than a random search. The particle swarm algorithm is the best

performing algorithm overall.
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Figure 4.30: The best Neyman-Pearson (éyp) scores achieved by each hy-
perparameter search algorithm averaged over the 185 strongest antenna pairs
of the 2014 clinical data set. The 95% confidence interval of each score is
indicated by the vertical notched lines. Lower is better. The particle swarm
algorithm (PS) performs the best. The other algorithms evaluated were ran-
dom search (RS), random walk (RW), simulated annealing (SA) and genetic
algorithm (GA).

Discussion

PS yielded the best performance followed by GA and RS. The weaker performance
of SA and RW might be a consequence of the limited exploration allowed by these
algorithms. Because these algorithms only allow limited exploration of the search
space, they are very prone to being trapped in local optima. Since the PS algorithm
was able to consistently produce the best models, this algorithm could be used to
identify the models used to build the library when only the best model from each

antenna pair is considered.

4.3.7 Ensemble Selection Experiment

In this experiment, the predictive performance of the forward stepwise selection
(FSS) algorithm described in Section 3.5.3 is compared to ensemble selection using
best individuals selection (BIS). In order for the experiment trials to be performed

in a feasible amount of time, the following modifications were made to the original
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classification procedure described in Section 3.5.4. Firstly, the model library from
which each ensemble was selected, comprised only the best models from each antenna
pair. The impact of this change on the predictive performance is investigated in
Section 4.3.5. Secondly, the ensemble size has been reduced to a total of 50 models
(from 100, in Section 3.5.4), to further decrease the required computations. The
predictive performance of the ensemble classifier was defined in terms of the AUC
of the classifier’s ROC curve. Two classification trials were considered equivalent if
their AUC scores were within £0.05 of each other. The objective of this experiment
is to test the following hypothesis.

Hypothesis

Using each of the ensemble selection methods described in Section 3.5.3 will yield
better predictive performance than selecting the best individual models to form the

ensemble.

Results

The true-positive and false-positive rates for the ROC curve were generated by
training and evaluating ensembles over 12 train-test folds from the 2014 clinical
data set, where each test set comprised the scans from a single volunteer as in [46].
The false-positive target rates used in this experiment were {0.05, 0.1, 0.2, 0.5}.
In addition the median peak amplitude threshold for antenna inclusion was set to
20 mV also as in [46], consequently the classifier only used features from the 185
strongest antenna pairs.

Four FSS configurations were evaluated. Firstly, the default FSS algorithm in
which models are selected from the model library without replacement and the en-
semble is initialized using the single best individual model (abbreviated, FSS-d).
Secondly, FSS using selection with replacement and single model initialization was
evaluated (F'SS-r). Thirdly, F'SS using selection without replacement and initializa-
tion using the 10 best individual models was evaluated (FSS-m). Finally, F'SS using
both selection with replacement and multiple model initialization was evaluated

(FSS-rm).
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Figure 4.31: Receiver operating characteristic for 2014 clinical data using
the BIS ensemble selection method and multiple configurations of the FSS

method.

Table 4.23: Area under curve (AUC) values corresponding to ROC plots in
Figure 4.31. The actual AUC values are listed in the second column and the
AUC values relative to the AUC yielded the BM method was used are listed

in the third column.

Ensemble Selection Method | Actual AUC | Relative AUC
BIS 0.65 -
FSS-d 0.60 -0.05
FSS-r 0.52 -0.13
FSS-m 0.60 -0.05
FSS-rm 0.53 -0.12

Discussion

In all cases, the F'SS ensemble selection method yielded worse predictive performance

than the BIS method. The FSS method performed better when replacement was

not allowed. One possible explanation for poor performance of the FSS method is

that the selection algorithm may have overfitted to the cross validation folds used

to evaluate the model selections since the 2014 clinical data set is very limited (96

scans).
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Conclusions and Future Work

5.1 Conclusions

This thesis explored signal-processing approaches aimed at anomaly detection in
data sets generated by a low-power microwave breast screening system. The algo-
rithms developed were tested on limited data but are aimed to offer some preliminary

directions for treatment of signals generated by the recently developed system.

5.1.1 Peak Absolute Voltage Analysis

The results in Section 4.1 demonstrate that, in general, the more recent data sets
comprise much weaker signals than the previous data sets, this could contribute to
the absence of statistically significant variation between features from tumor-bearing
and tumor-free scans observed in Section 4.2, on the 2017 clinical and 2017 phantom
data sets. The change in signal strength is due to significant changes in the hardware

system since the 2014 clinical and 2014 phantom data sets were recorded.

5.1.2 Statistical Analysis Experiments

For the 2017 clinical data set, there is no statistically significant variation between
the features of healthy and suspicious scans (with regard to distribution means
and dispersion). Some significant results were obtained when the data set was
partitioned by volunteer breast density. However, due to the small population size,

especially when the data set was partitioned by volunteer breast density. This
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suggests that this radar screening system is better suited to monitoring breasts with
higher density. It is not clear that any conclusions should be drawn based on these
results. The statistically significant results observed in Section 4.2.1 may simply be
due to random chance.

The results of Experiment 2 in Section 4.2.2 indicate that DFT features en-
capsulate differences in breast density well. As in Section 4.2.1, due to the small
population sized used in this Experiment, there is a possibility that the results
observed were influenced by random chance and do not represent a global trend.

In Experiment 3 (Section 4.2.3), features extracted from the 2014 phantom data
set all demonstrate a statistically significant difference between tumor-bearing and
tumor-free scans. However, in Experiment 4 (Section 4.2.4), such a difference is
not observed in features extracted from the 2017 phantom data. Assuming the
2017 phantom data contains sufficient information for significant differences to be
observed between populations, these results suggest that, different feature extraction
methods are necessary to detect differences in the 2017 phantom data.

Experiment 5 in Section 4.2.5 demonstrated the importance of identifying the
correct portion of the radar signals. Using the incorrect signal portion resulted in
less statistically significant results than when the correct signal portion is used, (as

in Experiment 1).

5.1.3 Machine Learning Experiments

The feature comparison experiment (Section 4.3.3) indicated that PCA does not
work as well as the deterministic feature extraction methods (Section 3.3).

The results of the hyperparameter search experiment, presented in Section 4.3.4,
show that using select hyperparameter searches to build a model library yields equiv-
alent predictive performance to an exhaustive grid search, as well as faster training
time per ensemble. Therefore, when performing a classification task at a fixed false-
positive target rate, it is more effective to use a hyperparameter search method to
build the model library. The random search algorithm in particular yielded superior
predictive performance to the grid search.

The results of the model library experiment in Section 4.3.5 show that building

model libraries using only the best models from each antenna-pair yields approxi-
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mately equivalent predictive performance to building libraries from all hyperparame-
ter configurations from all antenna pairs. Therefore, the classification task at a fixed
false-positive target rate can be optimized by using only the best hyperparameter
configurations from each antenna pair. Furthermore, these hyperparameter configu-
rations can be identified more efficiently using a hyperparameter search method like
particle swarm optimization.

The ensemble selection experiment in Section 4.3.7 demonstrated that using the
FSS ensemble selection method yields worse predictive performance to ensemble
selection using the BIS method. This was the case even when selection with re-

placement and multiple best model initialization was used.

5.2 Future Work

5.2.1 Feature Extraction

The DFT features in this thesis only include magnitude information from the scan
signals. It is possible that the phase information also contains useful information
that might further improve the classifier’s predictive performance.

In addition, PCA is a powerful tool for reducing the dimensionality of data. It
could be useful to use PCA in conjunction with the features proposed in 3.3 to yield
low-dimensional feature vectors for each radar scan rather than just low-dimensional
feature vectors for each scan signal. This could greatly simplify the classification

algorithms used with out hurting the predictive performance.

5.2.2 Statistical Analysis

Repeating the experiments in Section 4.2 with a larger data set and consequently,
higher experimental power is recommended to confirm the trends observed in the

experiment results presented in this thesis.

5.2.3 Machine Learning

Many of the hyperparameter search algorithms used in this thesis have their own

parameters that must be selected. Due to time constraint, most of the parameters
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were selected manually with relatively little investigation. More extensive tuning of
these parameters could yield significantly different results.

Using an exhaustive grid search of hyperparameter is much more feasible when
performing classification tasks over a range of false-positive target values because
each model only needs to be evaluated once. On the other hand, in the hyperparameter-
search-enabled classifier that was investigated in this thesis, a separate search is
conducted for each false-positive target rate and the observed error rates of previ-
ously trained models are discarded. In the experiments presented in this thesis each
search was limited to a maximum of 1000 hyperparameter configuration evaluations
and the total size of the original hyperparameter grid was 4620. Consequently, the
hyperparameter search classifier was likely to train and test many hyperparameter
configurations redundantly. If the hyperparameter search classifier was updated to
store the false-positive and false-negative rates yielded by each model evaluation and
allowed these metrics to be re-used by future searches then the redundant training
and testing would be eliminated. This, in turn, could make the hyperparameter
search classifer more feasible for classification over a range of false-positive target
rates.

The FSS ensemble selection method investigated in this thesis is only one ensem-
ble selection that can be applied to this problem. Alternative selection methods may
yield superior predictive performance. Some examples of algorithms that might be
investigated are Pareto ensemble pruning proposed by Qian et al. [94], and GASEN
proposed by Zhou et al. [95], boosting, bagging and stacking [72].

Finally, in this thesis, only ensemble support vector machines are used for gen-
erating models. Other machine learning algorithms such as neural networks and

decision trees could be equally or more effective.
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Appendix A

2017 Clinical Data Set: Patient
Information Recorded for Each

Volunteer

e DBreast Size: volunteer’s bra size. One of: {A B,C,D,DD}.

e Age: volunteer’s age in years

o IWeight: volunteer’s weight in kilograms

e Height: volunteer’s height in centimeters

e Pre/Post-Menopausal: whether volunteer is pre-menopausal or post-menopausal

e Family History: whether volunteer has a family history of breast cancer (yes
or no). This suggests whether the volunteer might have a genetic disposition

favorable to the growth of cancer.

o Ultrasound Gel Used: whether ultrasound gel was used as a matching medium
(to fill the air gaps between the volunteer’s breast and the antenna array

embedded in the bra).

e Breasts Scanned: which of volunteer’s breasts were scanned (left, right or

both).

e Breast Density: tissue density level of volunteer’s breasts using BI-RADS cat-

egorization [56]. One of: {1,2,3,4}.
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e Suspicion Present: whether or not there is an anomaly present in the vol-
unteer’s breast tissue that warrants further medical investigation (yes or no).
This particular datum represents the sort of departure from healthy baselines

that the radio-frequency screening system is intended to detect.

e Suspicion Location: approximate location of anomaly present in volunteer’s

breasts.

e Benign Tumor Present: whether there is benign tumor tissue present in vol-

unteer’s breasts (yes or no).
e Benign Tumor Location: approximate location of benign tumor tissue.

e (yst Present: whether there are one or more cysts present in the volunteer’s

breasts
e Cyst Location: approximate location of cyst(s).

e (Cancer Present: whether there are cancerous tumors present in volunteer’s

breasts

e Cancer Location: approximate location of cancerous tumor(s).
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